ÄûÃÊÊÓƵ

Foundations of Software Systems (FoSS)

Niel de Beaudrap

Selected Publications

2024

  • De Beaudrap, N., & East, R. (2024). Simple qudit ZX and ZH calculi, via integrals. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024) (pp. pages). Bratislava, Slovakia: Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.MFCS.2024.20
    Conference publication. .
  • Beaudrap, N. D., & Ramsey, C. (2024). On numerical diameters and linear maps. Retrieved from http://arxiv.org/abs/2402.06791v2
    Preprint.

2023

  • Beaudrap, N. D., & East, R. D. P. (2023). Simple qudit ZX and ZH calculi, via integrals. Retrieved from http://dx.doi.org/10.4230/LIPIcs.MFCS.2024.20
    Preprint.

2022

  • De Beaudrap, N., & Herbert, S. (2022). Fast stabiliser simulation with quadratic form expansions. Quantum, 6, pages. doi:10.22331/Q-2022-09-15-803
    Article. .
  • De Beaudrap, N., Kissinger, A., & van de Wetering, J. (2022). Circuit extraction for ZX-Diagrams can be #P-Hard. In Leibniz International Proceedings in Informatics (LIPIcs) Vol. 229 (pp. pages). Paris, France: Schloss Dagstuhl. doi:10.4230/LIPIcs.ICALP.2022.119
    Conference publication. .
  • Cross, A., Javadi-Abhari, A., Alexander, T., De Beaudrap, N., Bishop, L. S., Heidel, S., . . . Johnson, B. R. (n.d.). OpenQASM 3: a broader and deeper quantum assembly language. ACM Transactions on Quantum Computing, pages. doi:10.1145/3505636
    Article. .
  • de Beaudrap, N., Kissinger, A., & van de Wetering, J. (2022). Circuit Extraction for ZX-diagrams can be #P-hard. doi:10.48550/arxiv.2202.09194
    Preprint. .

2021

  • Beaudrap, N. D., & Herbert, S. (2021). Fast Stabiliser Simulation with Quadratic Form Expansions. Retrieved from http://dx.doi.org/10.22331/q-2022-09-15-803
    Preprint.
  • de Beaudrap, N. (n.d.). Well-tempered ZX and ZH Calculi. Electronic Proceedings in Theoretical Computer Science, 340, 13-45. doi:10.4204/eptcs.340.2
    Article. .
  • de Beaudrap, N., Kissinger, A., & Meichanetzidis, K. (n.d.). Tensor Network Rewriting Strategies for Satisfiability and Counting. Electronic Proceedings in Theoretical Computer Science, 340, 46-59. doi:10.4204/eptcs.340.3
    Article. .
  • Cross, A. W., Javadi-Abhari, A., Alexander, T., Beaudrap, N. D., Bishop, L. S., Heidel, S., . . . Johnson, B. R. (2021). OpenQASM 3: A broader and deeper quantum assembly language. Retrieved from http://dx.doi.org/10.1145/3505636
    Preprint.

2020

  • Aldi, M., de Beaudrap, N., Gharibian, S., & Saeedi, S. (2021). On Efficiently Solvable Cases of Quantum k-SAT. Communications in Mathematical Physics, 381(1), 209-256. doi:10.1007/s00220-020-03843-9
    Article. .
  • Beaudrap, N. D., & Herbert, S. (n.d.). Quantum linear network coding for entanglement distribution in restricted architectures. Quantum, 4, 356. doi:10.22331/q-2020-11-01-356
    Article. .
  • De Beaudrap, N., Wang, Q., & Bian, X. (n.d.). Fast and effective techniques for T-count reduction via spider nest identities. LIPIcs : Leibniz International Proceedings in Informatics. doi:10.4230/LIPIcs.TQC.2020.11
    Article. .
  • Beaudrap, N. D. (2020). Well-tempered ZX and ZH Calculi. Retrieved from http://dx.doi.org/10.4204/EPTCS.340.2
    Preprint.
  • de Beaudrap, N., Bian, X., & Wang, Q. (n.d.). Techniques to Reduce Ï€/4-Parity-Phase Circuits, Motivated by the ZX Calculus. Electronic Proceedings in Theoretical Computer Science, 318, 131-149. doi:10.4204/eptcs.318.9
    Article. .
  • de Beaudrap, N., Duncan, R., Horsman, D., & Perdrix, S. (n.d.). Pauli Fusion: a Computational Model to Realise Quantum Transformations from ZX Terms. Electronic Proceedings in Theoretical Computer Science, 318, 85-105. doi:10.4204/eptcs.318.6
    Article. .
  • Beaudrap, N. D., Kissinger, A., & Meichanetzidis, K. (2020). Tensor Network Rewriting Strategies for Satisfiability and Counting. Retrieved from http://dx.doi.org/10.4204/EPTCS.340.3
    Preprint.
  • Beaudrap, N. D., Bian, X., & Wang, Q. (2020). Fast and effective techniques for T-count reduction via spider nest identities. Retrieved from http://dx.doi.org/10.4230/LIPIcs.TQC.2020.11
    Preprint.
  • de Beaudrap, N., & Horsman, D. (n.d.). The ZX calculus is a language for surface code lattice surgery. Quantum, 4, 218. doi:10.22331/q-2020-01-09-218
    Article. .

2019

  • Beaudrap, N. D., Bian, X., & Wang, Q. (2019). Techniques to Reduce $Ï€/4$-Parity-Phase Circuits, Motivated by the ZX Calculus. Retrieved from http://dx.doi.org/10.4204/EPTCS.318.9
    Preprint.
  • Beaudrap, N. D., & Herbert, S. (2019). Quantum linear network coding for entanglement distribution in restricted architectures. Retrieved from http://dx.doi.org/10.22331/q-2020-11-01-356
    Preprint.
  • Barrett, J., de Beaudrap, N., Hoban, M. J., & Lee, C. M. (n.d.). The computational landscape of general physical theories. npj Quantum Information, 5(1). doi:10.1038/s41534-019-0156-9
    Article. .
  • Beaudrap, N. D., Duncan, R., Horsman, D., & Perdrix, S. (2019). Pauli Fusion: a Computational Model to Realise Quantum Transformations from ZX Terms. Retrieved from http://dx.doi.org/10.4204/EPTCS.318.6
    Preprint.

2018

  • Xu, X., Beaudrap, N. D., O’Gorman, J., & Benjamin, S. C. (n.d.). An integrity measure to benchmark quantum error correcting memories. New Journal of Physics, 20(2), 023009. doi:10.1088/1367-2630/aaa372
    Article. .

2017

  • Aldi, M., Beaudrap, N. D., Gharibian, S., & Saeedi, S. (2017). On efficiently solvable cases of Quantum k-SAT. Retrieved from http://dx.doi.org/10.1007/s00220-020-03843-9
    Preprint.
  • Xu, X., de Beaudrap, N., O'Gorman, J., & Benjamin, S. C. (2017). An integrity measure to benchmark quantum error correcting memories. doi:10.48550/arxiv.1707.09951
    Preprint. .
  • Beaudrap, N. D., & Horsman, D. (2017). The ZX calculus is a language for surface code lattice surgery. Retrieved from http://dx.doi.org/10.22331/q-2020-01-09-218
    Preprint.
  • Barrett, J., de Beaudrap, N., Hoban, M. J., & Lee, C. M. (2017). The computational landscape of general physical theories. doi:10.48550/arxiv.1702.08483
    Preprint. .

2016

  • Nigmatullin, R., Ballance, C. J., Beaudrap, N. D., & Benjamin, S. C. (n.d.). Minimally complex ion traps as modules for quantum communication and computing. New Journal of Physics, 18(10), 103028. doi:10.1088/1367-2630/18/10/103028
    Article. .
  • Nigmatullin, R., Ballance, C. J., Beaudrap, N. D., & Benjamin, S. C. (2016). Minimally complex ion traps as modules for quantum communication and computing. Retrieved from http://dx.doi.org/10.1088/1367-2630/18/10/103028
    Preprint.
  • de Beaudrap, N., Giovannetti, V., Severini, S., & Wilson, R. (2016). Interpreting the von Neumann entropy of graph Laplacians, and coentropic graphs. In Unknown Book (pp. 227-236). American Mathematical Society. doi:10.1090/conm/658/13125
    Chapter. .

2015

  • Beaudrap, N. D. (2015). On exact counting and quasi-quantum complexity. Retrieved from http://arxiv.org/abs/1509.07789v1
    Preprint.
  • Beaudrap, N. D., & Gharibian, S. (2015). A linear time algorithm for quantum 2-SAT. Retrieved from http://dx.doi.org/10.4230/LIPIcs.CCC.2016.27
    Preprint.

2014

  • Beaudrap, N. D. (2014). On computation with 'probabilities' modulo k. Retrieved from http://arxiv.org/abs/1405.7381v2
    Preprint.
  • Beaudrap, N. D., & Roetteler, M. (2014). Quantum linear network coding as one-way quantum computation. Retrieved from http://arxiv.org/abs/1403.3533v3
    Preprint.
  • Beaudrap, N. D. (2014). Difficult instances of the counting problem for 2-quantum-SAT are very atypical. Retrieved from http://arxiv.org/abs/1403.1588v2
    Preprint.

2013

  • de Beaudrap, N., Giovannetti, V., Severini, S., & Wilson, R. (2013). Interpreting the von Neumann entropy of graph Laplacians, and coentropic graphs. doi:10.48550/arxiv.1304.7946
    Preprint. .
  • de Beaudrap, N. (2013). A linearized stabilizer formalism for systems of finite dimension. Quantum Information and Computation, 13(1&2), 73-115. doi:10.26421/qic13.1-2-6
    Article. .

2012

  • Beaudrap, N. D. (2012). On the complexity of solving linear congruences and computing nullspaces modulo a constant. Retrieved from http://dx.doi.org/10.4086/cjtcs.2013.010
    Preprint.

2011

  • BEAUDRAP, N. D. (2010). UNITARY-CIRCUIT SEMANTICS FOR MEASUREMENT-BASED COMPUTATIONS. International Journal of Quantum Information, 08(01n02), 1-91. doi:10.1142/s0219749910006113
    Article. .
  • Beaudrap, N. D. (2011). A linearized stabilizer formalism for systems of finite dimension. Retrieved from http://dx.doi.org/10.26421/QIC13.1-2-6
    Preprint.

2010

  • Beaudrap, N. D., Osborne, T. J., & Eisert, J. (n.d.). Ground states of unfrustrated spin Hamiltonians satisfy an area law. New Journal of Physics, 12(9), 095007. doi:10.1088/1367-2630/12/9/095007
    Article. .
  • de Beaudrap, N., Osborne, T. J., & Eisert, J. (2010). Ground states of unfrustrated spin Hamiltonians satisfy an area law. doi:10.48550/arxiv.1009.3051
    Preprint. .
  • de Beaudrap, N., Ohliger, M., Osborne, T. J., & Eisert, J. (2010). Solving frustration-free spin systems.. Physical review letters, 105(6), 060504. doi:10.1103/physrevlett.105.060504
    Article. .
  • De Beaudrap, N. (n.d.). On Restricted Unitary Cayley Graphs and Symplectic Transformations Modulo $n$. The Electronic Journal of Combinatorics, 17(1). doi:10.37236/341
    Article. .
  • de Beaudrap, N. (2010). On restricted unitary Cayley graphs and symplectic transformations modulo n. doi:10.48550/arxiv.1002.0713
    Preprint. .

2009

  • Beaudrap, N. D. (2009). Unitary-circuit semantics for measurement-based computations. Retrieved from http://arxiv.org/abs/0906.4261v4
    Preprint.

2008

  • Beaudrap, J. R. N. D. (2008). Theory of measurement-based quantum computing. Retrieved from http://arxiv.org/abs/0812.2869v1
    Preprint.
  • de Beaudrap, N. (n.d.). Finding flows in the one-way measurement model. Physical Review A, 77(2). doi:10.1103/physreva.77.022328
    Article. .
  • Beaudrap, N. D., Danos, V., Kashefi, E., & Roetteler, M. (2008). Quadratic Form Expansions for Unitaries. Retrieved from http://arxiv.org/abs/0801.2461v1
    Preprint.
  • de Beaudrap, N., Danos, V., Kashefi, E., & Roetteler, M. (2008). Quadratic Form Expansions for Unitaries. In Lecture Notes in Computer Science (pp. 29-46). Springer Berlin Heidelberg. doi:10.1007/978-3-540-89304-2_4
    Chapter. .

2007

  • Beaudrap, N. D., & Pei, M. (2007). An extremal result for geometries in the one-way measurement model. Retrieved from http://arxiv.org/abs/quant-ph/0702229v2
    Preprint.

2006

  • Beaudrap, N. D. (2006). Finding flows in the one-way measurement model. Retrieved from http://dx.doi.org/10.1103/PhysRevA.77.022328
    Preprint.
  • de Beaudrap, N., Danos, V., & Kashefi, E. (2006). Phase map decompositions for unitaries. doi:10.48550/arxiv.quant-ph/0603266
    Preprint. .
  • de Beaudrap, N. (2006). A complete algorithm to find flows in the one-way measurement model. doi:10.48550/arxiv.quant-ph/0603072
    Preprint. .

Unpublished works

  • De Beaudrap, N., & Ramsey, C. (n.d.). On numerical diameters and linear maps. New York Journal of Mathematics, pages.
    Article. .