Self-test for prospective MSc students

Congratulations on your MSco er and welcometo our program! We would like you to arrive at Sussexwell-prepared for your courseand to that end we have prepared this self-test in order to help you check your readinessand identify any areasthat might need revision or further study. These problems are not meant to be extensive and covering everything you should know, but they do cover many of the basics required.

We do not expect prior specialist area knowledgefor entrants in our MSc programs (e.g. not prior Astronomy knowledge is needed for the Astronomy MSc). However, to be successfulyou should arrive with a solid background in both Mathematics and basic Physics at an university degreelevel.

If you are able to do the majority of the problems below by yourself (possibly after somerevision, as required) you are reasonably well prepared.

Mathematics:

Vector Calculus: Show that, for any vector A and scalar the following identities hold:

$$r (r A) = r(r A) r^{2}A$$

 $r (r A) = 0$
 $r (r) = 0$

Calculus: Calculate the integrals:

Di erential equations: Solve the following equations:

$$\frac{dy}{dx} = \begin{array}{c} y(x^2 & 1) \end{array}$$

$$\frac{dy}{dx} \quad 2xy = x$$
$$\frac{d^2y}{dt^2} \quad \frac{dy}{dt} \quad 30y = e^{6t}$$

Fitting data points:

Fit a straight line and a quadratic to the data in the Table using any numerical method you like (e.g. if you know Python you can use curve_fit function from scipy.optimize). Which t is better? (Hint: Compare the standard deviations.)

Figure 1: Data for tting.

Di raction of light: In optics, you have learned that light bends around objects, i.e. exhibits di raction. One of the simplest cases to study is the bending of light around a straight edge. In this case, we nd that the intensity of light varies as we move away from the edge according to:

 $I = 0.5I_0 f[C(v) + 0.5]^2 + [S(v) + 0.5]^2 g$

where I_0 is the intensity of the incident light, v is proportional to the distance travelled, and C(v) and S(v) are the Fresnel integrals:

$$C(v) = \int_{0}^{Z_{v}} \cos(w^{2}=2) dw$$
$$S(v) = \int_{0}^{Z_{v}} \sin(w^{2}=2) dw$$

and

Using any method, numerically integrate the Fresnel integrals, and thus evaluate
$$I=I_0$$
 as a function of v for 0 v 10. Plot your results for C; S and $I=I_0$. Do they agree with what you have learned about di raction in Optics? As an extra twist, try to this *computationally e ciently*.

Challenge: Derive the formula for I.

Physics:

Mechanics: Two particles move about each other in circular orbits under the in uence of their mutual gravitational force, with a period

. At some time t = 0, they are suddenly stopped and then they are released and allowed to fall into each other. Find the timeT after which they collide, in terms of % f(x) .

Mechanics: Small oscillations: A particle moves under the in uence of the potential $V(x) = Cx^n e^{-ax}$. Find the frequency of small

If the initial mass is M, and the initial v is zero, integrate the above equation to obtain r

$$m = M - \frac{1}{1+v}$$

Relativity: Colliding photons: Two photons each have energy E. They collide at an angle and create a particle of mass M. What is M?

Electrodynamics: Consider an electrostatic potential given by

$$= \frac{q}{4_0} \frac{e^{-ar}}{r} (1 + br)$$

where a and b are constants.

- (a) Find the distribution of charge (both continuous and discrete) that will give this potential.
- (b) What, if anything, is special when a = 2b?
- (c) Interpret your results physically.

Electrodynamics/Waves: A transverse plane wave impinges normally in vacuum on a perfectly absorbing at screen.

- (a) From the law of conservation of linear momentum, show that the pressure radiation pressure exerted on the screen is equal to the eld energy per unit volume in the wave.
- (b) Let the incident radiation have a ux of 1 :4kW=m². The absorbing screen has a mass of g=m². What is the screens acceleration due to radiation pressure?

Electrodynamics/Waves: A monochromatic plane wave has complex electric eld $E(r;t) = E_0 \exp[i(k r !t)]$. It travels in the + z direction in a lossless isotropic medium with relative permittivity $_r = 4$ and relative permeability $_r$ 1. The eld is linearly polarized in the x-direction, with frequency = 1 GHz and a peak eld +10³ V=m at t = 5 ns and z = 1 m.

- (a) De ne the medium refractive index and nd the angular frequency, phase velocity, wavenumber, wave vector, and wavelength.
- (b) Obtain the real instanteneous expression forE(r;t) valid for any position and time.

(c) Obtain the real instanteneous expression for the magnetic eld $B\left(r\,;tB\right.$