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Abstract

In multi-component, discrete systems, such as Boolean networks and cellular automata,

the updating scheme of the individual elements plays a crucial role in determining their dy-

namic properties and their suitability as models of complex phenomena. Many interesting

properties of these systems rely heavily on the use of synchronous updating of the individual

elements. Considerations of parsimony have motivated the claim that, if the natural sys-

tems being modelled lack any clear evidence of synchronously driven elements, then random

asynchronous updating should be used by default. The introduction of a random element

precludes the possibility of strictly cyclic behaviour. In principle, this poses the question of

whether asynchronously driven Boolean networks, cellular automata, etc., are inherently bad

choices at the time of modelling rhythmic phenomena. This paper focuses on this subsidiary



1 Introduction

It is generally argued that modelling techniques such as cellular automata, Boolean networks,

and other variants, are uniquely �tted to address issues of spatio-temporal complexity in areas as

diverse as morphogenesis, gene regulation, immune networks, and population dynamics. However,

much evidence has been gathered suggesting that many of the initially interesting features of these

formal classes have depended crucially on the use of a synchronous rule for updating the atomic

elements. In contrast, the implementation of asynchronous updating rules has tended to produce

trivial, rather than complex, behaviour.

The by now almost classic example is the work by Nowak and May (1992) on spatial patterns

in a population of players of the Prisoner's Dilemma. The complex spatial patterns obtained in

their model, which suggest interesting implications with respect to the polymorphic conviviality of

cooperators and defectors, depend critically on the use of a synchronous updating scheme. When

random asynchrony is introduced no spatial pattern appears, and the much gloomier picture of

global defection as the only stable strategy results, (Huberman & Glance, 1993)
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.

A number of other studies have arrived at similar conclusions for cellular automata (Bersini

& Detours, 1994; Ingerson & Buvel, 1984; Ruxton & Saravia, 1998; Sch�on�sch & de Roos, 1999)

random Boolean networks (Harvey & Bossomaier, 1997), and even continuous-state systems such

as coupled-map lattices (Abramson & Zanette, 1998; Bohr et al., 1999; Jiang et al., 1999; Lumer

& Nicolis, 1994; Rolf et al., 1998). The methodological lesson that can be derived from these cases

is that the choice of an updating rule plays a crucial role in the behaviour of the model, and,

unless one can advance su�cient reasons to the contrary, random asynchronous updating is `more

physical'. This is because, in the lack of better knowledge about the system being modelled, random

asynchronous updating is the most parsimonious default choice when the states of the system are

modelled as discrete. It only makes sense to model a system as discrete if the transitions between

states can be assumed to occur at a much more rapid timescale than the typical scale of observation

(and other timescales of relevance). E�ectively, transitions are considered as almost instantaneous.

In such cases it is highly unlikely that the transitions of any two elements occur simultaneously

(in e�ect the probability is 0 if we take transitions as strictly instantaneous). This means that

elements should be updated in sequence. The less biased ordering for this sequence is a random

ordering, and so random asynchronous updating, rather than parallel orchestration by an external

clock, is justi�ed as a default choice. This caveat is especially relevant to studies of local or global

synchronization of individual elements in such systems as their results would be undermined should

they depend heavily on the use of an unjusti�ed synchronous updating scheme.

This paper is concerned with a subsidiary aspect of the e�ects of random asynchrony in the long

term behaviour of multicomponent systems with discrete states such as random Boolean networks:

the possibility of �nding attractors with marked rhythms without the use of synchronous updating.

Logical or Boolean networks have been used as models of genetic regulation (Kau�man, 1969,

1974, 1993; Thie�ry & Romero, 1999; Thomas, 1973, 1978), immune responses (Kaufman et al.,

1985, 1999; Muraille et al., 1996; Thie�ry & Thomas, 1995), constraints on evolution (Volkert

& Conrad, 1998), and developmental processes, both speci�c (Mendoza & Alvarez-Buylla, 1998;

S�anchez et al., 1997) and idealised (Dellaert & Beer, 1994). Theoretical treatments of Boolean

networks often make a distinction between synchronous and asynchronous cases (Glass, 1975; Glass

& Kau�man, 1973; Thomas, 1991; Thomas et al., 1995). The distinction is inspired by the need to

use logical tools to explore complex continuous dynamics qualitatively. Transitions between states

in synchronous networks are allowed to be arbitrary in terms of the Hamming distance between two

contiguous states, but this introduces an arti�cial element of orchestrated updating not usually

found in continuous extended systems (Glass, 1975). In contrast, (non-random) asynchronous

networks incorporate knowledge about the continuous system (which may be empirically derived)

in the form of typical time delays between transitions in order to determine which element should

be updated next (the one with the shortest delay or higher �rst derivative). This causes consecutive

states in the network evolution to di�er in at most the state of one single element.
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In (May et al., 1995) the original choice of synchronous updating is defended by saying that it may be appropriate

for some biological situations. This is, no doubt, true, although they fall short of justifying that such is indeed the

case for the situation they are modelling.

2



Other studies, however, concentrate not on modelling speci�c continuous systems, but on un-

derstanding the generic features of random Boolean systems for which there is no prior knowledge

about time delays (Bagley & Glass, 1996; Bastolla & Parisi, 1998a, 1998b; Kau�man, 1969, 1993).

In these cases the updating is performed synchronously. It has been argued (Harvey & Bosso-

maier, 1997) that this form of updating remains arti�cial even for this more general purpose,

unless one can justify the existence of a driving clock. As a consequence, the default alternative to

asynchronous updating using known time lags should be random asynchronous updating in which



general arguments about what can be expected from ARBNs as a class. The word `asynchronous'

here refers to a random updating scheme



imaginable, and the methodology used to search for cases that rank high under these measures is,

in principle, equally applicable. The chosen measure indicates the degree to which a given state

in an ARBN of N nodes approximately recurs after approximately P � N single node updates.

Networks ranking high on the scale de�ned by this measure will be called pseudo-periodic
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with

pseudo-period P . A time index j is de�ned which is incremented by one unit after N random

updates to single nodes (i.e., one time step equals N individual updates), but pseudo-periodicity

will not be de�ned as strict recurrence of states using this index. Instead, the correlation between

two states of the network will be used to that end. The state at time j is denoted by a vector

whose components s
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Figure 1: Evolved ARBN with N = 32, K = 2, and a target period P = 32. (a): evolution for

1000 time steps, (b): autocorrelation. The dashed line shows the target autocorrelation.
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Figure 3: Evolved ARBN with N = 16, K = 4, and a target period P = 16. (a): evolution for

1000 time steps, (b): autocorrelation.
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Figure 4: Evolved ARBN with N = 16, K = 4, and a target period P = 32. (a): evolution for

1000 time steps, (b): autocorrelation.
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Figure 7: Evolved ARBN with N = 32, K = 2, and a null target autocorrelation. (a): evolution

for 1000 time steps, (b): autocorrelation.
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