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Abstract

In visual perception, learning is a pervasive phenomenon, which, when properly studied, may

o�er valuable insights into the inner workings of the brain. We outline a theoretical framework

for the computational study of perceptual learning, aiming to make the relationships among the

existing models more readily apparent, and to identify promising directions for future research.

1 Introduction

A generation ago, mathematical psychology, which at the time was the discipline in charge of

modeling behavior, appeared to be in poor shape. William Estes, one of the main dramatis personae

in that �eld, described it like this: \Look at our present theories... or at the probabilistic models

that are multiplying like overexcited paramecia. Although already too complicated for the average

psychologist to handle, these theories are not yet adequate to account for the behavior of a rodent on

a runway" (Estes, 1957). During the following decades, when the mainstream psychology underwent

a major paradigm shift, the modeling of perceptual learning fared better than what one might have

expected from the view expressed by Estes. A new theoretical outlook, which encouraged thinking

now termed representational or computational, took over the �eld. At the same time, the models

became, if anything, more complex compared to those of 1957.

Encouragingly, the models are now also more successful in explaining behavior (rather than

merely predicting the probability of a certain response to a given stimulus), while giving no undue

troubles to the psychologists.
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Insofar as there is progress, it seems to stem mainly from (1)

the improvement in the experimental techniques that subserve data collection in behavioral and

physiological psychology, and (2) the revision of the theoretical basis from which models are drawn.

The \rodent on a runway" example mentioned above serves well to illustrate both these points.

On the theoretical or conceptual side, the current explanation takes the route presaged by Tolman

and based on the concept of cognitive maps (O'Keefe and Nadel, 1978). On the experimental side,

the existence of cognitive maps in the rat brain could not have been demonstrated without modern

multi-electrode recording methods and the information-processing tools that accompany them.
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For an interesting historical perspective on these issues, see (Hintzman, 1994).
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space in such a manner that the probability of generalization between any two stimuli is mono-

tonic in their proximity (i.e., similarity). Shepard's treatment of this issue included a derivation of

the monotonic dependence law from some basic assumptions on the probability measure used to

quantify generalization.

In theoretical neurobiology, the notion of generalization underlies the \Fundamental Hypothe-

sis" stated in Marr's theory of the cerebral neocortex (Marr, 1970): \Where instances of a particular

collection of intrinsic properties (i.e., properties already diagnosed from sensory information) tend

to be grouped such that if some are present, most are, then other useful properties are likely to exist

which generalize over such instances. Further, properties often are grouped in this way" (pp. 150-

151).
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tional capabilities of neural networks. If this foundation is be useful in the development of speci�c

models of learning in the nervous system, statistical samples of stimuli must be shown to contain in-

formation necessary for learning. Having been downplayed for decades by the work of Chomsky and

his school, the notion that statistical inference can support learning even in markedly \symbolic"

domains such as language acquisition is now making a comeback. On the one hand, this process

is aided by the growing evidence that humans (both adults and infants) are sensitive to statistical

cues present in linguistic stimuli. For example, subjects can extract from such cues, implicitly,

information about boundaries between the underlying morphological units (Sa�ran et al., 1996),

word meaning (Markson and Bloom, 1997), and even grammar-like rules (Berns et al., 1997). These

�ndings raise doubts concerning the exclusive applicability of symbol-manipulating computational

models to learning problems hitherto coached in purely symbolic terms. Consequently, models built

around symbolic abstraction (rule inference) now have to compete routinely with models that posit

similarity-based processing (Berry, 1994; Goldstone and Barsalou, 1998).
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In visual perception, 3D object recognition is one domain where the hegemony of symbolic/structural

models is increasingly challenged by statistical/connectionist learning approaches. Visual recogni-

tion gives rise to a variety of learning-related tasks, similar to those encountered in the context of

face processing (mentioned briey above). In these tasks, the lure of symbolic/structural models

stems from the observation that for many object classes the main challenge inherent in learning

recognition | achieving invariance over transformations or deformations of the stimulus | dis-

appears if the objects are represented structurally (Biederman, 1987). This observation leads to

the postulate that learning to recognize an object entails the identi�cation of its parts and the

determination of their spatial relationships. Under this assumption, the possession of a library of

generic parts that can be assembled in various ways would also endow the system with the ability

to represent and process novel objects | the ultimate kind of generalization.

Recently, a di�erent route to invariance and to the ability to process novel shapes has been pro-

posed and implemented in a series of models (Poggio and Edelman, 1990; Edelman and Duvdevani-

Bar, 1997; Riesenhuber and Poggio, 1998; Edelman, 1998a). The computational underpinnings of

this alternative approach are discussed elsewhere (section 5.2; see also (Sinha and Poggio, 1996)).

For now, we shall take the encroachment of alternative learning models into territory hitherto re-

served for structural methods as a license to focus our review on neural, rather than symbolic,

computation.

4 Cues for learning

A central question to be addressed in the modeling of a perceptual learning task is that of su-

pervision: what are the sources and what is the form of the information that guides the learning

process? The usual distinction found in the literature is between supervised models, which require

each training stimulus to be accompanied by the desired output, and unsupervised ones, which are

able to extract some statistical information from the data, without guidance.

Classifying an experimental setup on the basis of supervision available to the learning model

is, however, not always as straightforward as it may seem. Even when the learning process is fully

and explicitly controlled by the experimenter, the subject has access to, and is likely to make use

of, information that transcends the experimental design. For example, when the subject is required

to learn the names of some unfamiliar faces, the ensuing confusion rate will be higher among some
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At a certain level of abstraction, the distinction between symbolic and \connectionist" computational paradigms

ceases to make sense, as attested by the progress in implementing rules and variables in neural networks; see, e.g.,

(Ajjanagadde and Shastri, 1991).
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task are parameterized by only a few variables (Edelman and Intrator, 1997), and (2) the \front

end" of a typical visual system | its measurement space

9

| largely preserves the local geometry



with the dimensionality of the embedding space. This includes the Self-Organizing Map algorithm

(Kohonen, 1982), and the di�erent varieties of auto-encoders, or bottleneck networks (Cottrell

et al., 1987; Leen and Kambhatla, 1994).

The performance of such unsupervised or self-supervised manifold-extracting algorithms can

be improved if additional knowledge is brought to bear on the problem. Typically, this is done

by making the learning mechanism observe certain invariances known to apply to the problem

(Foldiak, 1991; Wiskott, 1998). A particularly simple way to do that is by providing the label of

the category to which each stimulus belongs.
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To see how this information helps the algorithm to

isolate the relevant manifold, note that directions orthogonal to it can be e�ectively speci�ed by

forcing stimuli that di�er along those directions to be mapped to the same category (Intrator and

Edelman, 1997).

5.3 Learning visual category structure (classi�cation)

From the perspective of the task, the main di�erence between regression and classi�cation is that

in the latter, the location of the point within the low-dimensional structure does not matter, while

in the former it does. For example, the location of the point representing a face in a face space

(the manifold corresponding to the di�erent possible views of the same face) would encode its

orientation | a piece of information that should not be discarded. In comparison, in the vernier

task, where the problem is that of classi�cation, only the membership in one of the two clusters in

the representation space matters to the system.

Despite this di�erence, the basic considerations identi�ed before in the discussion of regression

apply also to classi�cation. In particular, the curse of dimensionality still has to be taken into

account. Huber (1985) illustrates this point quantitatively, by showing how di�cult it is to �nd

a 3-dimensional Gaussian bump (which could, in terms of Figure 3, right, correspond to one of

the class-conditional clusters), when it is embedded



well-known that this information reveals everything that there is to know about stochastic data,

such as the measurements performed by a perceptual system upon the world. The underlying

generator of the data (and, therefore, quantities needed for regression or classi�cation) can then

be estimated optimally from the density function. However, the �rst step in this process | the

inference of an unconstrained density function from data | is prone to the curse of dimensionality,

as shown in the seminal work of Stone (1980; 1982).

In view of this problem, researchers typically take two approaches, which are not mutually

exclusive. The �rst is to make some assumptions about the density function. For example, one

may assume that the density function is smooth, then estimate it using splines (Wahba, 1979) or

radial basis functions (Poggio and Girosi, 1990). Alternatively, one may assume something about

the structure of the density. For example, it may be postulated to belong to an additive model,

making it expressible as a sum of functions of some low-dimensional projections of the data (Stone,

1985; Stone, 1986). One may also assume that the density is factorial, namely, a product of marginal

densities of one variable (Dayan et al., 1995). The latter two methods do not attempt to reduce

the dimensionality of the density function, yet they do make the estimation process more e�cient

and less prone to the curse of dimensionality.

The second general approach bypasses the problem of density estimation, rather than attempting

to solve it. It is based on the observation that for many practical problems only a certain function

of the density is required. The hope is that such a function can be easily computed directly from

the data, without the need to go via the full density estimation. This happens, e.g., when the

desired function is de�ned over a low-dimensional manifold embedded in the original space, or,

more generally, when the desired function has a simpler structure compared to the full density. In

such cases, the learning system may attempt to extract the low-dimensional representation of the

problem from the data, using an unsupervised approach such as principal component analysis and

its generalizations, or using a supervised approach tailored to the desired target function, as it is

done in many feed-forward network models.

In all these cases, a model would do well if it applies the methods listed in the preceding sections,

which dealt with learning manifold extraction (regression) and clustering (classi�cation). Reverting

to those methods means, e�ectively, that their subsumption under the aegis of density estimation

is not practical, unless the estimation algorithm (1) aims for learning a certain target function

of the density, which is usually problem-speci�c, and (2) relies on some prior assumptions about

the properties of the desired representation, such as low dimensionality and smoothness (Intrator,

1993).

6 Discussion

The theoretical stance adopted so far in this paper equates learning with the acquisition of e�cient

representations, a computational procedure that can be regarded as a kind of statistical inference.

It may seem that exploring the implications of this stance have lead us away from the gritty details

which must be dealt with by any model that aims to simulate human learning behavior. We

believe, however, that a good model starts at the top, with a clear notion of what is being modeled,

and why. In this concluding section, we recapitulate the links between computational theory and

mechanism-level practice in the modeling of perceptual learning, and speculate about the possible

future developments in the modeling of perceptual learning.
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6.1 On the levels of explanation of learning

The overarching concern in the modeling of a perceptual phenomenon is, of course, getting the

performance right. Beyond that, however, there is a considerable variation in what is deemed

acceptable: while some comprehensive models treat both the computational (theoretical) and the

implementational aspects of the problem, others tend to concentrate on the issues of implementation

and mechanism. Models built around neural networks are particularly likely to belong to the second

category, going straight from the phenomenology to a hypothesis about the underlying mechanism,

perhaps also attempting to emulate along the way the real biological neural network.

We illustrate this observation with an example that involves one of the most striking mani-

festations of perceptual learning, found in the task of detecting a small low-contrast Gabor patch

projected onto a certain retinotopically de�ned location. The detection threshold in this task de-

pends on whether or not the target patch is anked at a distance by patches of similar orientation

and spatial frequency (Polat and Sagi, 1993). Shortly after the e�ect of the anking patches has

been demonstrated, it turned out to be amenable to learning: the spatial range of the e�ect (i.e.,

the maximum e�ective distance between the target and the anking patches) grows with practice

(see Sagi and Zenger, this volume). Signi�cantly, learning is only possible if the original, untrained

range is extended gradually, by exposing the subject to con�gurations of progressively larger and

larger extent (Polat and Sagi, 1994).

A phenomenon such as this seems positively to demand a mechanism-level explanation in terms

of receptive �elds of retinotopic \units," linked laterally and exerting facilitatory inuence on each

other; (Polat and Sagi, 1994) o�ered precisely this explanation for their psychophysical �ndings.

However, as we claimed in the introduction, models formulated primarily in the language of units

and connections achieve less than what a model can and should achieve, because they concentrate

on the wiring details at the expense of leaving the master plan | the computational goal of the

system | out of the picture. To support this argument, let us re-consider the \lateral learning"

scenario, keeping in mind the taxonomy of learning paradigms discussed earlier.

Assume for the moment that the goal of the system is to detect the faintest possible line element

(a real-life counterpart to a Gabor patch) in a given retinal location. Merely lowering the decision

threshold for that location will likely just increase the false-alarm rate there; additional information

must be brought to bear on the decision, if it is to be reliable. The presence of other line elements

in the vicinity would count as the necessary additional support, if they are compatible with the

original hypothesis (i.e., if their orientation is consistent with that of the element whose fate they

are about to seal). Thus, the task at hand can be reformulated as that of (literal) interpolation

between the anking lines (or extrapolation, if the continuation of an \end-stopped" segment is

sought).

The value of this formulation lies in that it brings about the possibility of a uniform treatment

for a range of perceptual learning tasks. Indeed, on an abstract level, learning to detect a Gabor

patch anked by similar patterns is now seen to be the same as learning to recognize an object from

a novel viewpoint, which is \sandwiched" between two familiar views. The analogy drawn between

these two tasks hinges on a parallel between the view space of the object on the one hand, and the

\space" space | that is, the retinal location space | of the Gabor patch on the other hand. Once

this analogy is realized, cross-fertilization may occur in both directions. On the one hand, models

of object recognition may bene�t from postulating a mechanism that carries out interpolation by

growing lateral links between neighboring units in a view representation space. On the other hand,

models of line detection may bene�t from exploring the possibilities originally developed in the

context of object recognition (e.g., interpolation with feedforward basis functions).

An edifying perspective on the issue of levels of modeling is provided by recalling some of
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