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Abstract

According to Wolpert's no-free-lunch (NFL) theorems [Wolpert, 1996b,

Wolpert, 1996a], generalisation in the absence of domain knowledge is

necessarily a zero-sum enterprise. Good generalisation performance in

one situation is always o�set by bad performance in another. Wolpert

notes that the theorems do not demonstrate that e�ective generalisation

is a logical impossibility but merely that a learner's bias (or assumption

set) is of key importance in determining its generalisation performance.

However, in this paper it is argued that this may be an over-reading of

the results. Situations can be identi�ed in which a learner's assumptions

are e�ectively guaranteed correct. The in-practice prevalence of these sit-

uations may account for the reliably good generalisation performance of

methods such as C4.5 and Backpropagation.
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1 Introduction

There has been lively controversy overWolpert's no-free-lunch theorems [Wolpert,

1996b; Wolpert, 1996a; Wolpert, 1995b; Wolpert, 1992; Wolpert, 1995a; Wolpert

and Macready, 1995] and Scha�er's closely related conservation law [Scha�er,

1994]. These results show that there is no guaranteed correct way of performing
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generalisation. They thus a�rm Hume's claim to the e�ect that the observa-

tion of `the frequent conjunction of objects' does not permit the drawing of any

particular inference concerning `any object beyond those of which we have had

experience' [Hume, 1740].

The underlying idea behind these results is easily stated. Let's say we have a

particular learning method and we would like to know how well it will generalise

on the problems from a speci�c domain. If we have no special knowledge about

the domain then all problems in the domain have to be considered uniformly

likely, i.e,. the problems in the domain have to be considered to follow a uniform

distribution. In this context, the problems in the domain may be organised

into `opposites', such that the way the unseen (test) cases are classi�ed in a

particular problem is the reverse of the way they are classi�ed in its opposite.

A particular learning algorithm generalises cases in a speci�c way. Thus, if

it performs slightly better than random guessing on a particular problem, it

must perform slightly worse than random guessing on the problem's opposite.

On a random selection of problems from the domain, a learning algorithm will

therefore tend to produce above-chance performance on some problems and

below-chance performance on other problems. Since the chances of it producing

above-chance performance are identical to the chances of it producing below-

chance performance, it will, on average, produce exactly the same performance

as random guessing.

At �rst sight, the NFL result appears to demonstrate that e�ective (i.e.,

above-chance) generalisation is impossible in principle. But this is not the case.

In the NFL scenario, we have the rather severe constraint that nothing is known

about the domain. All problems have then to be considered equally likely and

the process of applying a particular learner to some random selection of prob-

lems necessarily produces chance-level performance (on average). The explicit

consequence of the NFL result is thus that in the situation where no domain

assumptions can be made, chance-level performance is the inevitable result.

But the subtext of the NFL work is that it is the assumptions a learner makes

about its domain which are key.
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As Michael Perrone has commented, `What

makes NFL important is that it emphasizes in a very striking way that it is

the assumptions that we make about our learning domains that make all the

di�erence.'
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However, interpreting the NFL theorems in this way raises a new concern. As

Wolpert has noted, the biases of empirical generalisation methods are typically

not made explicit and are only rarely justi�ed in terms of the expected applica-

tion domain. He notes that `for many algorithms, no one has even tried to write

down that set of [problems] for which their algorithm works well.' [Wolpert,

1996b]. However, it is clear that generalisation methods are capable of perform-

ing well in practice across a wide variety of situations [Thrun et al. 1991]. In

1

Wolpert speci�cally mentions the requirement to prove that `the non-uniformity in [the

problem domain] is well-matched to your ... learning algorithm.' [Wolpert, 1996b, p. 19]
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From a posting to the `connectionists' mail list.
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latter operation depends entirely on the properties of the agent and should not,

therefore, be considered a part of the generic complexity of the learning task.

This should be estimated purely in terms of the identi�cation operation.

Identifying the relevant indication involves identifying the connections that



the data available to the learner agent take the form of combinations of values

of variables | a very common scenario | and that each particular combination

of values is treated as an n-dimensional datapoint. If the task is relational, we

know that particular actions are contingent on relati6n00.7(v)20t.1203 73Td
[(on)-1600a9.6g3(task)-4000.3203 5gen4Tf
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c d a b --> f

a b d b --> h

e c d e --> h

c b a e --> f

a c d e --> f

b c a e --> f

b d d e --> h

e d a c --> f

a c d c --> h

c d a c --> h

c c a e -->

Figure 3: Hybrid learning task.

in (the data for) a characteristically relational problem, e.g.

� the task may have genuine, non-relational aspects and thus exhibit a de-

gree of meaningful clustering. The `greater-than' task is a good example.

� The task may be represented to the learner in such a way as to create

arti�cial non-relational aspects. An example of this situation is a parity

task whose representation includes an extra input variable whose value

always e�ectively records the parity status of the original inputs is an

example.

In both of these situations, the exhibited clustering is useful for the purposes

of learning, i.e., it can be used as the basis for generalisation. There are two

further situations, however, in which the clustering is of no use whatsoever.

� The clusters may be an artifact of the way in which the learner's data

have been selected or generated.

� The clusters may be the results of some sort of noise or data error.

In both of these cases, the clusters observed in the data are merely sampling

artifacts and thus of no use whatsoever within the learning process.

To summarise, in a characteristically relational task we may see clustering

e�ects arising from non-relational aspects of the task, characteristics of the task

encoding, characteristics of the data selection process or noise/error. E�ects due

to the task encoding, data selection or noise may be termed incidental, on the

grounds that their relationship with the underlying problem is not meaningful.

Within this grouping, e�ects due to characteristics of the task representation

may be termed generalising while e�ects due to the data selection or noise

may be termed non-generalising. The various possibilities are tabulated in

Figure 4.
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Incidental
Incidental
Incidental

Noise/error

Problem encoding
Non-relational aspect Generalising

Generalising
Exemplar selection

Cluster origin

Figure 4: Origins of clusters in characteristically relational problems.

3.1 Typical scenarios

Despite the di�culties noted, it remains the case that non-relationality does

produce clustering while relationality does tend to eliminate it. The existence

or lack of clustering therefore can serve as a guide for tentative classi�cation

decisions. We have seen that almost all learning tasks show a certain degree of

clustering. But the more clustering they exhibit the stronger the evidence in

favour of a non-relational classi�cation. The range of possibilities is illustrated

in Figure 5. Each task here is displayed as a 2-dimensional graph and is therefore

assumed to be de�ned in terms of two, numeric data variables and one action

variable, whose value is either `1' or `0'. The problems represent typical scenarios

from the perfectly non-relational to the perfectly relational. In the `perfect
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Perfect clustering Strong clustering Weak clustering Perfect checkerboard

Non-relational Relational

Figure 5: Clustering scenarios.

clustering' scenario, all the inputs whose output label is 1 are in the left half of

the input space. Other the inputs whose output label is 0 are in the right half
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of the space. The data are thus perfectly organised into two, cleanly separated

regions, de�nable in terms of a single, axis-aligned boundary.

Next, we have a scenario showing strong clustering. The inputs here are still

cleanly separated into uniformly instantiated regions. But the organisation is

less than perfect. The clusters would need to be de�ned in terms of, say, four

circular regions.

The next scenario shows weak clustering. Now the input points are dis-

tributed in a more complex fashion. There are some uniformly instantiated

regions but these do not have particularly regular shapes. The situation might

correspond to a characteristically relational problem which shows some non-

relational e�ects. Or it might simply correspond to a complex non-relational

problem.

Finally, we have the `perfect checkerboard' scenario. In this situation the

two types of input are perfectly mixed up. This is the extreme case of input

data disorganisation, i.e., maximum `sensation entropy.' Every point has as its

nearest neighbour a datapoint with a di�erent label. Absolute input values (i.e.,

coordinates) therefore have no signi�cance whatsoever in the determination of

output.

The perfect checkerboard scenario is the logical extreme of the relational

dimension. And as has already been noted, all parity problems produce perfect

checkerboard distributions. But do all checkerboards arise from valid parity

tasks? Recall that the parity task is de�ned in terms of binary data and action

values. Thus each dimension of the data space has only two values. If we draw

out the checkerboard for a 2-bit parity problem then it has the appearance of

Figure 6.

0

0

1

1

Figure 6: Checkerboard pattern for a parity problem.

Checkerboards whose dimensions are all 2-valued can always be viewed as

n-bit parity problems | n being the number of dimensions. Problems such as

the one shown in Figure 8-1, which have more than two values per dimension,

but only two distinct output values, obviously cannot be interpreted as parity

problems. However, they can be interpreted in terms of a modulus-addition

operation, a generalisation of the parity rule.
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relational e�ects (i.e., in terms of data similarity

7

or data clustering) will tend to

perform well across the board. The almost universally good (i.e., above chance)

performance of methods such as C4.5 and Backpropagation may be explained

in these terms.
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