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Abstract

A genetic algorithm for inferring stochastic context-free grammars from �nite

language samples is described. Solutions to the inference problem are evolved by op-

timizing the parameters of a covering grammar for a given language sample. We de-



S! A B (1:0)

A! a (0:6)

A! C S (0:4)

B! b (1:0)

C! a (1:0)

Figure 1: SCFG for the language a

n

b

n

(n � 1)

speech recognition, part-of-speech tagging, optical character recognition and robust pars-

ing. While Schwem and Ost recognize the importance of the stochastic inference problem,

their approach is restricted to the inference of stochastic regular grammars. In contrast,

the present work tackles the more general problem of inferring stochastic grammars for

the class of context-free languages.

The following sections describe our approach to grammatical inference in more detail.

Stochastic context-free grammars are briey described in section 2. Section 3 discusses the

problem of inferring stochastic grammars from corpora. Details of the genetic algorithm

are then given in section 4 and in section 5 we present the results of several experiments

in learning grammars for a range of formal languages.

2 Stochastic Context-Free Grammars

A stochastic context-free grammar (SCFG) is a variant of ordinary context-free grammar

in which each grammar rule is associated with a probability, a real number in the range

[0,1]. The set of production probabilities will be referred to as the parameters of the SCFG.

For a SCFG to be consistent , the probabilities associated with all rules that expand the

same non-terminal symbol must sum to one.

The language L(G) generated by a SCFG G comprises the set of all strings of terminal

symbols derivable from the start symbol of the grammar (typically, S). In addition, the

parameters de�ne a probability distribution over strings in L(G). For a string � 2 L(G),

the probability of a parse tree for � is given by the product of the probabilities of all the

grammar rules involved in its construction. The probability P

G

(�) of the string � is the

sum of the probabilities of all of its parses.

An example of a simple SCFG is shown in �gure 1, with the probability associated with

each production given in parentheses. The SCFG generates the language fa

n

b

n

jn � 1g,

where P

G

(ab) = 0:6, P

G

(aabb) = 0:24, and so on.

A corpus C for a language L is a �nite set of strings drawn from L, where each string

� 2 C is associated with an integer f

�

representing its frequency of occurrence. The size

N

C

of the corpus is de�ned as the sum of the frequencies of the individual strings in C.

That is:

N

C

=

X

�2C

f

�

The relative frequency p

�

of a string � 2 C is de�ned as p

�

= f

�

=N

C

2



ab 595

aabb 238

aaabbb 97

aaaabbbb 49

aaaaabbbbb 14

aaaaaabbbbbb 5

Figure 2: A Corpus for the Language a

n

b

n

An example of a corpus for the language fa

n

b

n

jn � 1g is shown in �gure 2. The

frequency of the string ab is 595, the frequency of aabb is 238, and so on. The total size

of the corpus is 998. The relative





The population maintained by the genetic algorithm is organized as a two dimensional

grid, with opposing sides of the grid identi�ed (i.e. members of the population inhabit the

surface of a torus). Thus, each member of the population has exactly eight neighbours.

A member of the population encodes a set of parameters for the rules of the covering

grammar, with each parameter encoded as a �xed-length bit string. If a block of n bits

is used to encode each parameter, then for a covering grammar having M rules each

member of the population has a genome of length Mn bits, where the jth parameter is

encoded as the jth n-bit block.

Because the parameters of a SCFG are not independent of one another, we do not

encode their values directly. Instead, each n-bit block is treated as an encoding of a

numerical weight . To obtain the actual parameters of the SCFG, the weights are normal-

ized as part of the decoding process. If w

j

is the weight associated with rule r

j

, then

p

j

= w

j

=W is the probability associated with this rule (where W is the sum of all those

weights associated with rules expanding the same non-terminal as r

j

). A weight of zero

means that the corresponding rule does not belong to the rule-set of the SCFG.

An obvious scheme for encoding the weights is to treat each n-bit block as a binary

representation of an integer value. However, this simple scheme has the drawback that

it makes it relatively unlikely that a rule will be assigned a zero weight. In general, the

covering grammar has many more rules than are required for the target SCFG, so it makes

sense to use an encoding that is biased in favour of rules having zero weight rather than

the other way around. To achieve this, the encoding scheme is modi�ed by reserving a

small number of initial bits in each block. If each of these initial bits is set to 1, then the

remaining bits are decoded to obtain the rule weight. In all other cases the rule �weight is

zero, and the remaining bits are ignored. The number of reserved bits e�ectively controls

the amount of bias in favour of a rule being assigned a weight of zero, while the number

of remaining bits controls the size of the rule weights and thus the precision of the rule

probabilities. For the experiments described in the following section we have found that

between one and three initial bits and 7 `weight' bits is su�cient

2

.

The members of the initial population are generated randomly, after which the genetic

algorithm repeatedly executes the following select-breed-replace cycle:

Select a random member of the population for breeding, and choose the �ttest of

its eight neighbours as the second parent.

Breed by applying crossover and mutation to produce two children.

Replace the weakest parent by the �ttest child.

Selection and replacement are carried out within a small, local population. This allows

for rival solutions to emerge at di�erent locations and discourages too rapid a spread of

successful genetic information throughout the whole population. By replacing the weakest

parent, rather than the weakest neighbour, relatively un�t individuals still get a chance

at breeding while useful genetic material from the weakest parent may survive through

the �ttest child.

2

The actual number of initial bits is determined automatically in proportion to the size of the covering

grammar. The larger the grammar, the more weight bits are used.
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A characteristic of our parameter encoding scheme is that the probability associated

with any given rule does not depend solely on local properties of the genome (i.e. the

state of the relevant n-bit block). In



Language Nonterminals Parameters Successful Best



S! C B (0:51875)

S! DA (0:48125)

A! a (1:0)

B! S C (0:24778)

B! b (0:752212)

C! b (1:0)

D! A S (0:252066)

D! AC (0:066116)

D! a (0:681818)

Figure 4: Near-miss grammar for the language of two symbol palindromes

The results for the two palindrome languages initially appear less encouraging. For

PAL1, only two runs attained the threshold �tness value, while for PAL2 only one of the

three runs was terminated successfully. On the other hand, even on the worst runs in

each case the algorithm found grammars with quite high �tness. Furthermore, it should

be recalled that the threshold �tness value represents an arbitrary measure of success. In

particular, failure to attain this threshold does not imply that the algorithm has failed

to �nd a grammar with a correct (or nearly correct) set of rules. For example, it is

possible that the grammar generates the target language exactly, but with a non-optimal

probability distribution.

Inspection of the grammars produced for all runs of the PAL1 learning task showed

that the algorithm had performed rather better than suggested by the 2/10 success rate

given in the table. Figure 5 shows the grammar ranked �fth best (with a �tness of

0.897355) out of all those produced by the algorithm on this task. Aside from the presence

of one spurious production D! AC, which has a low associated probability (0.066116),

the grammar is otherwise correct. Indeed, it was found that the �ve �ttest grammars

produced by
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