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Abstract

A connectionist system that is capable of learning about the spatial structure of a simple

world is used for the purposes of synthetic epistemology: the creation and analysis of arti�cial

systems in order to clarify philosophical issues that arise in the explanation of how agents,

both natural and arti�cial, represent the world. In this case, the issues to be clari�ed focus on

the content of representational states that exist prior to a fully objective understanding of a

spatial domain. In particular, the criticisms of (Chrisley, 1993) that were raised in (Holland,

1994) are addressed: how can we determine that a system's spatial representations are more

objective than before? And under what conditions (tasks, training regimes, environments) do

such increases in objectivity occur? After analysing the results of experiments that attempt

to shed light on these questions, the study concludes by comparing and contrasting this work

with related research.

1 Synthetic epistemology: Philosophy and AI/ALife

Sometimes in order to clarify the theories and concepts one would like to use to explain a natural

system, it can be of great assistance to try them out on a simple, arti�cial system, which allows

greater control and clearer analysis. Just as one mightmore readily come to a clear understanding

of the principles of aerodynamics by studying a simple, arti�cial glider than by studying the

particularities of the feathers and muscles of sparrows, so one might also see more readily the

general structure of a proper psychology of real systems by �rst attempting to apply it to a

simple, arti�cial agent.

Thus, to clarify some new ideas being proposed for the explanation of natural intentional systems,

it seems a promising idea to turn to synthetic epistemology: the creation and analysis of arti�cial

systems in order to clarify philosophical issues that arise in the explanation of how agents, both

natural and arti�cial, represent the world.

Synthesis can thus be justi�ed as an approach to understanding epistemology in the same way

that it can be justi�ed as an approach to understanding intelligence (AI), or biology (ALife):

Arti�cial systems which exhibit lifelike behaviors are worthy of investigation on

their own rights, whether or not we think that the processes they mimic have played

a role in the development or mechanics of life as we know it to be. Such systems : : :

expand our understanding of life as it could be. By allowing us to view the life that

has evolved here on earth in the larger context of possible life, we may begin to derive
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Figure 1: The PDP architecture of the predictive map (locations�actions 7! sensations) formed

by composing a topological mapping T (locations � actions 7! locations) with a descriptive

mapping D (locations 7! sensations). Arrows indicate directed, full inter-connection between

layers of units.

states) and a descriptive mapping D (from locations to sensations). In actual use, the location

output of the T mapping, after a given action, is used as the location input to the T mapping for

the next action.

Thus, if a constantly north-facing robot considers moving forward and then moving right, it can use

the map to predict what sensations it would have after those moves by calculatingD(T (T (a;move-

north), move-east)), where a is a location representation corresponding to the robot's initial

location before the actions, and move-north and move-east are action representations with the

intuitive interpretation.

Given the iterative nature of the T mapping, the predictive map must be a recurrent network; in

the experiments discussed here, it is implemented as a simple recurrent network (Elman, 1990).

2.2 The experimental setup

The experimental situation used here (roughly the same as the one used in (Chrisley, 1993) and

(Holland, 1994)) is a deliberately impoverished one: a developing (learning) agent moving through

a simulated \grid world"; the part of the world simulated has only 81 cells or locations (9 by 9).

Each location has a 4-bit vector associated with it, which can be understood to be the sensations

the agent has when at that location (see �gure 4, in section 7 below). As in its normal use, the

CNM is to provide a means for this agent to improve its navigation of its space (and thus increase

the objectivity of its ways of representing that space) through sensory prediction.

The agent has eight actions available at any location, those of moving into each of the adjacent

locations (orientation is not modeled:



2.3 Learning regime

When the agent returns home, it iteratively learns the route, not by actually moving, but by

reviewing the remembered route in the following manner:

� First, generate a training set:

1.



work typically involve fewer states with only one or two transitions possible from or to a state,

and have no notion of the sensory properties of a state that may be shared with another state,

and be sensed by the agent. We believe that by adding the complexity found in the CNM world,

one begins to justify talk of learning spatial representations, instead of mere arbitrary grammars.

But even if that assumption is illicit, the CNM paradigm should still be valuable, at least within

the �nite state machine learning paradigm.

Furthermore, coarse-grained sensations actually support the intended spatial interpretation of the

CNM's activity. Since there are so few (i.e., 16) types of sensory properties a location might have,

the CNM cannot rely, in achieving its predictive aims, on merely recording the super�cial sensory

contingencies, but rather is forced to learn the more abstract spatial structure of its environment.

To exaggerate this e�ect, we did not even let the CNM use the current sensations as an input to

its predictive map, but rather forced it to use only its own representations.

It could still be objected that this, too, is unlike human cognition. It could be claimed that the way

that humans and other animals achieve most of their navigation is by learning associations between

actual detailed sensations, and not by developing some more abstract topological representation.

That is, organisms predict what comes next by looking and seeing where they are.
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It would be a mistake to think that because we are interested in understanding how cognizers are

able to make transitions from less objective to more objective ways of representing the world, that

we somehow think that the majority of cognition involves representations that are at the extreme

objective end of this scale. In fact, we agree that there are many kinds of cognitive interactions

with the world that require relatively unsystematic, pre-objective ways of representing, if they

involve any representation at all. Furthermore, it may be impossible for any embodied, �nite

system to ever achieve total objectivity or total systematicity. Nevertheless, we do think that

there are interactions for which the ability to increase systematicity is a cognitive virtue, and

spatial navigation is one of these.

In order to pump your intuitions concerning these matters, consider the kinds of mistakes





De�nition: A system represents a location l systematically if there is a representation

a such that:

1. whenever the system uses a, or a representation very functionally similar to a, it

does so to represent l and not some other location l

0

; and

2. whenever the system needs to represent l, it is capable of using a, or a represen-

tation very functionally similar to a, to do so.

For the case at hand, these requirements boil down to:

The CNM represents a location l systematically if there is a location code a such that,

normally, a is active on the \current location" units if and only if the agent is currently

at l.

Often, when speaking about the CNM's representations, we use expressions like \the same repre-

sentation" or \di�erent representations", when, strictly speaking, there is no such relevant issue of

representational identity, but rather only representation similarity, in particular functional simi-

larity. Thus, the above requirement is that normally all the codes a that the CNM has active on

the \current location" units when at A are functionally very similar, and the CNM never has a

code b, that is functionally very similar to one of the a, active on the \current location" units when

the CNM is at a place other than A. Thus, there are at least three ways in which systematicity

is a matter of degree:

1. the greater the number of di�erent ways of getting to the place A that yield a code func-

tionally equivalent to a, the greater the systematicity;

2. the greater the number of ways of getting to places other than A
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may be completely wrong in those predictions. The connection with correctness will be captured

in two ways in the experiments that follow: the criterion that the net learn until it correctly

predicts all sensations on its route; and the generalization that will naturally result in the cases

of high systematicity.

In the experiments that follow, we give an example of the cases that justify the introduction of

these functional equivalence measures: cases in which Euclidean distance/clustering would suggest

a functional equivalence that is not present, and cases in which Euclidean distance/clustering

would suggest functional divergence that is not present. This aspect of the research, then, can have

a relatively broad application, even if one is not interested in synthetic epistemology, connectionist

navigation or the development of objectivity.

5 A hypothesis concerning the requirements for the devel-

opment of systematic representation in the CNM

In order to address these issues concerning the requirements for the development of objectivity,

a hypothesis was formed concerning the conditions under which this style of representation will

arise in the CNM, and experiments have been conducted to test this hypothesis.

Given the de�nition of systematic representation in section 4, the central hypothesis of this paper

can be stated thus:

Hypothesis: The CNM will only develop a systematic representation of a location l if

its encounters with l, and with locations that resemble l, are so structured as to make

such a form of representation a useful means of minimizing the error of its predictions.

The plausibility of the hypothesis is a consequence of the CNM's non-symbolic form of represen-

tation, as discussed in section 4.1. The holistic, as opposed to atomistic, nature of representation

in the CNM implies that systematic representation will not be the default. Since what primarily

determines whether the two location codes used at two di�erent points in a route are similar is the

similarity of the sensory predictions that such codes are required to produce (and not the identity

of the two locations in question), the CNM will tend to violate the �rst of the two requirements

for systematicity. Thus, it is only likely to satisfy the �rst requirement if its routes through its

environment which generate its training regime are structured in particular ways.

The hypothesis itself doesn't have much force without some speci�cs concerning what kinds of

structure the CNM's encounters must have in order to make the hypothesis true. If one prefers,

one can rephrase the hypothesis into a question: what kind of spatial behaviours, if any, compel



the same (or very similar) outputs on the D mapping, then there will be a tendency for it

evolve weights such that the codes that are active in those two contexts, a and b, are functionally

equivalent, even if the CNM is at di�erent (albeit sensorily similar) locations in those two contexts.

Thus there is a tendency to violate the �rst of the two requirements for systematic representation.

In what situations, if any, can this tendency be overcome, such that systematic representations

are developed?

But this is only one example of how the predictive demands placed on the CNM constrain the

kinds of representations used. Another example is that making the same move at two di�erent

parts of the route will tend to produce similar codes for the location after those moves. The

representational demands of a recurrent network are extremely holistic, with the \optimal" rep-

resentation for the current situation being determined both by what it will give rise to in the

arbitrarily distant future, and by what what gave rise to it in the arbitrarily distant past, in

addition to the constraints of the present. Not only does the code that is used for the current

location have to be mapped to the current sensations via the D mapping, but it needs to give rise

to a code that can lead to the right predictions for the next step in the route, and it needs to be

such that it can be the product of inputting the last code and action into the T mapping.

6 Principles & Predictions

To make substantive the hypothesis of the previous section, we used it to make some predictions

concerning the conditions under which systematicity would and would not develop.

First, we noted four principles that we take to characterize the holistic interdependence of CNM

representations (i.e., the aspects of the CNM that make it non-symbolic, as discussed in sections

4.1 and 5):

1. same inputs tend to produce same outputs

2. di�erent inputs tend to produce di�erent outputs

3. same outputs tend to require same inputs

4. di�erent outputs tend to require di�erent inputs
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where:

� \=" means \similar" for movement and sensation vectors, but means \functionally equiva-

lent" for location codes; and

� \!" means \tends to make true".

Postulate 4 requires some explanation, since it does not hold unconditionally. In general, the

similarity or di�erence of moves made from a and b has no implication in itself for the functional

equivalence of the codes. But it does have implications when interacting with other contexts. In

particular, if D(a

+1

) = D(b

+1

), then ma 6= mb ! a 6= b. This is because di�erences in a and b

will be required in order to cancel out the di�erences in ma and mb in order to have a constant

result.

Conversely, if D(a

+1

) 6= D(b

+1

), then ma = mb ! a 6= b, by principle 4. To see why, �rst note

that principle 4 implies that D(a

+1

) 6= D(b

+1

) ! a

+1

6= b

+1

. Next, note that there will be an

even stronger push (via principle 4 again) for a 6= b than there would be based on prediction 5

alone, since the similarity in the movesma and mb must be compensated for by greater di�erences

in a and b in order to achieve a comparable di�erence in a

+1

and b

+1

. There will be no special

tendency produced by ma 6= mb.

In stating these tendencies, our use of \=" and \6=" suggests that we are once again assuming

either completely equivalent or maximally di�erent description vectors. But in fact, the relevant

description and movement vectors may be more or less similar or di�erent. These di�erences

should a�ect the functional equivalence of the relevant location codes accordingly, but given a

random distribution on sensation vectors and moves, we believe these additional modifying factors

can be ignored in our analysis.

In light of these postulates, we de�ned 7 (non-exhaustive) types of route, or scenarios, that we

thought might generate a large variation in the degree of systematicity of the representations the

the CNM develops for two locations that are sensorily equivalent. The situations are listed in

�gure 2.

Using the �ve principles, we predicted the following rough ordering of these situations with respect

to the degree of systematicity that they impose on the CNM's representations for the two locations,

from most systematic to least:

SIDO These scenarios should yield the best systematicity, since because functional divergence

between the codes for di�erent places is fostered by exploring the di�erent sensory surround

of the two locations, yet each of the two locations is entered via a constant approach,

providing a basis for the development of very similar codes for the same place. Within this

group SIDOD should be more systematic than SIDOS, since the di�ering ways in to the two

locations will add the the divergence between their location codes.

DIDO This should be next best with respect to systematicity, because although the lack of a

common approach to the locations will yield a divergence between the codes used for the

same place, there will be a greater divergence between the codes used for the two di�erent

places, due to the exploration of their di�erent sensory surround.
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DIDO : Di�erent ways in, di�erent ways out. The route that the CNM takes approaches each places from several di�erent

directions, and leaves from each place in several di�erent directions.

SISO : Same way in, same way out. There are four possible sub-cases:

SS both the single direction in and the single direction out are the same for the two locations

SD the single way in is the same, but the single directions out are di�erent for the two locations

DS the single ways in are di�erent, but the single direction out is the same for the two locations

DD both the single ways in and the single directions out are di�erent for the two locations

DISO : Di�erent ways in, same way out. For each location, the CNM's route approaches from several di�erent directions,

but always leaves by the same direction. There are two sub-cases:

S the single way out is the same for both locations

D the single way out is di�erent.

SIDO : Same way in, di�erent ways out. For each location, the CNM's route approaches from one direction only, but

leaves by several di�erent directions. There are two sub-cases:

S one in which the single way in is the same for both locations, and

D one in which the single way in is di�erent.

Figure 2: The classi�cation of routes used in the experiments.

SISO These should yield poor systematicity, due to the lack of exploration of the two locations'

di�erent sensory surrounds. However, SISODS and SISODD should be more systematic

than SISOSS and SISOSD, since the single moves in are not the same between the two

locations, thus causing some functional divergence between the codes for the two places.



1. DIDO: N; W; S; SE; E; N; N; W; S; E; S; S; NW; N; NW; E; N; S; E; SE; S; W; W; SW; NE; E; E; NW; W.

2. SISOSS: N; W; S; SE; SE; N; W; N; N; W; NE; SE; SE; S; SW; N; W; NE; W; N; W; SE; S; SE; N; W; W; NE;

N; W; S; S; SE; E; N; W; N.

3. SISODD: N; E; S; S; W; NW; E; N; E; E; S; W; S; W; S; NW; NE; N; E; SW; E; S; W; N; N; E; S; S; W; N.

4. DISOS: N; W; SE; E; S; W; NW; N; E; W; SW; SE; E; E; W; NE; N; W; W; S; SE; S; E; N; W; N; NW; NE; S;

W; SE; E; SE; W; W; N.

5. DISOD: N; E; S; S; N; N; W; E; SW; S; E; N; N; NW; SW; E; E; SE; S; W; N; W; NW; NE; S; E; S; SW; SE; N;

N; W.

6. SIDOS: S; E; N; W; NW; E; N; SE; SW; S; E; E; NW; W; NW; E; E; SW; S; E; S; NW; N; NW; E; S; S; E; W;

N; NW; E; W; SE.

7. SIDOD: S; E; E; NW; W; N; W; SE; S; E; S; NW; N; N; E; S; SW; E; W; N; N; S; S; E; N; W; N; N; SW; SE.

Figure 3: The route types used in the experiments, and the particular move sequences that realized

them
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Figure 4: The region of the grid world used in the experiments. The four-bit binary vector at

each location indicates the description or sensation vector associated with that location.

7 Experiments & results

To test these predictions, we had the CNM learn 7 routes, each route realizing a di�erent route

type (see �gure 3). The particular environment that was used is shown in �gure 4. The CNM

converged on a solution with no errors within, on average, 16330 epochs of training.

6

The learning

rate was 0.01, and the momentum was 0.5.

As we surmised (cf section 4.2), the standard Euclidean measure of distance (and attempts at

functional analysis based on it, such as cluster analysis) is an unreliable measure of functional

equivalence. The non-linear nature of networks means that sometimes codes that are geomet-

rically close will have di�erent functional properties, and sometimes codes that are relatively

geometrically distant will be functionally equivalent. An example of this was found in the codes

(C

29

, C

24

and C

33

) the CNM learned for the DIDO route (for moves 29, 24, and 33; see �gure

6

In a few of the simulations, there were a few prediction errors (at most 2 on any route) with respect to the

learned route, but none of the errors involved the two locations under scrutiny nor their immediate neighbours.

14



Code 1 Code 2 Distance F

b

F

p

F

d

C

29

C

24

0.87 87.50% 62.50% -1.056

C

29

C

33

0.74 84.38% 50.00% -1.517

Figure 5: An example of Euclidean similarity and functional equivalence coming apart.

 36. 1100 N  (4, 4) B 0010 A 1100N 
 26. 1100 N  (4, 4) B 0010 A 1000NW 
 31. 1100 SE  (4, 4) B 1000 A 0100E 
 3. 1100 SE  (4, 4) B 1000 A 0100E 

 32. 0100 E  (5, 4) B 1100 A 1000SE 
 4. 0100 E  (5, 4) B 1100 A 1001S 

 16. 0100 NE  (5, 4) B 0010 A 1010N 
 17. 1010 N  (5, 3) B 0100 A 1001W 

 35. 0010 W  (4, 5) B 1001 A 1100N 
 25. 0010 W  (4, 5) B 1001 A 1100N 
 6. 0010 W  (4, 5) B 1001 A 1000NW 
 21. 0010 SE  (4, 5) B 1000 A 1001S 

 15. 0010 W  (4, 5) B 1001 A 0100NE 
 10. 1000 W  (3, 3) B 1001 A 0001SW 

 33. 1000 SE  (6, 5) B 0100 A 1001W 
 2. 1000 W  (3, 3) B 1001 A 1100SE 
 30. 1000 W  (3, 3) B 1001 A 1100SE 
 19. 1000 W  (3, 3) B 1001 A 1000S 

 18. 1001 W  (4, 3) B 1010 A 1000W 
 12. 1010 SE  (3, 5) B 0001 A 0010E 

 11. 0001 SW  (2, 4) B 1000 A 1010SE 
 34. 1001 W  (5, 5) B 1000 A 0010W 
 13. 0010 E  (4, 5) B 1010 A 1001E 

 22. 1001 S  (4, 6) B 0010 A 1001E 
 29. 1001 S  (4, 3) B 1111 A 1000W 

 24. 1001 N  (5, 5) B 1001 A 0010W 
 1. 1001 N  (4, 3) B 1100 A 1000W 

 5. 1001 S  (5, 5) B 0100 A 0010W 
 27. 1000 NW  (3, 3) B 1100 A 1111NE 
 20. 1000 S  (3, 4) B 1000 A 0010SE 

 7. 1000 NW  (3, 4) B 0010 A 1000N 
 8. 1000 N  (3, 3) B 1000 A 1001E 

 28. 1111 NE  (4, 2) B 1000 A 1001S 
 23. 1001 E  (5, 6) B 1001 A 1001N 
 9. 1001 E  (4, 3) B 1000 A 1000W 

 14. 1001 E  (5, 5) B 0010 A 0010W 

Figure 6: Cluster analysis of all location codes used in the DISOS route. Labels indicate the

move number that produced the code, the description vector for the location, the move made, the

coordinates of the location, the description vector of the previous place, the description vector of

the following place, and the move taken to get there.

5). Although the distance between C

29

and C

33

was less than than the distance between C

29

and

C

24

, the functional equivalence of the former pair was less than that of the latter pair, on all three

of our measures of functional equivalence.

7.1 Qualitative analysis

One can use cluster analysis to get a rough idea of the di�erent degrees of systematicity developed

in learning the di�erent types of routes. Figure 6 shows the cluster analysis of the location codes

developed in learning the DISOS route. Note how the codes corresponding to (5, 5) are found in

several parts of the tree, suggesting low functional equivalence between them. The same applies to

the codes for (4,3). Note also that codes for (5,5) and (4,3) are often clustered together, suggesting

a high functional equivalence between them. Both of these factors indicate a very low degree of

systematicity.

In contrast, the cluster analysis of the codes developed for the SIDOD route (�gure 7) suggests a

high degree of systematicity. The codes for (5,5) are all clustered together, as are the codes for

(4,3), and the (4,3) and (5,5) codes are in di�erent (albeit neighbouring) sub-clusters, suggesting

that they might be functionally divergent, despite the sensory equivalence of the two locations.
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 30. 1100 SE  (4, 4) B 1000 A 1100S 

 22. 1100 S  (4, 4) B 1001 A 0010S 

 8. 1100 SE  (4, 4) B 1000 A 0010S 

 27. 1001 N  (4, 3) B 1100 A 1111N 

 6. 1001 N  (4, 3) B 1100 A 1000W 

 21. 1001 N  (4, 3) B 1100 A 1100S 

 14. 1001 N  (4, 3) B 1100 A 1010E 

 24. 1001 E  (5, 5) B 0010 A 0100N 

 10. 1001 E  (5, 5) B 0010 A 1001S 

 2. 1001 E  (5, 5) B 0010 A 1000E 

 18. 1001 E  (5, 5) B 0010 A 0010W 

 29. 1000 SW  (3, 3) B 1111 A 1100SE 

 7. 1000 W  (3, 3) B 1001 A 1100SE 

 3. 1000 E  (6, 5) B 1001 A 0100NW 

 11. 1001 S  (5, 6) B 1001 A 0010NW 

 15. 1010 E  (5, 3) B 1001 A 0100S 

 23. 0010 S  (4, 5) B 1100 A 1001E 

 9. 0010 S  (4, 5) B 1100 A 1001E 

 1. 0010 S  (4, 5) B 1100 A 1001E 

 19. 0010 W  (4, 5) B 1001 A 1100N 

 12. 0010 NW  (4, 5) B 1001 A 1100N 

 17. 0010 SW  (4, 5) B 0100 A 1001E 

 28. 1111 N  (4, 2) B 1001 A 1000SW 

 25. 0100 N  (5, 4) B 1001 A 1100W 

 16. 0100 S  (5, 4) B 1010 A 0010SW 

 4. 0100 NW  (5, 4) B 1000 A 1100W 

 26. 1100 W  (4, 4) B 0100 A 1001N 

 5. 1100 W  (4, 4) B 0100 A 1001N 

 20. 1100 N  (4, 4) B 0010 A 1001N 

 13. 1100 N  (4, 4) B 0010 A 1001N 





The systematicity results using pattern- and bit-based functional equivalence measures are shown

in �gure 8. We also calculated the systematicity of the 7 scenarios using the distance-based

measure, shown in �gure 9 (note that this is not a measure of the Euclidean distance between the

codes, but a measure of the distance between the sensations that two codes predict).

8 Discussion

The data are fairly univocal. The SIDO scenarios produce the most systematic codes, the SISO

scenarios to a lesser extent, and the DISO scenarios even less. This agrees with our predictions,





10 Future work

In addition to the future work already mentioned (cf sections 3, 8 and 9), some other possibilities

should be mentioned.

The generalization exhibited by the CNM so far only involves di�erent combinations of transitions

that it has made before. Another important kind
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