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tions with the environment, and between separate parts

of the robot itself (8, 22). Designing appropriate cogni-

tive architectures is a task with inherently explosive com-

plexity. Complexity is likely to scale much faster than

the number of layers or modules within the architecture

| it can scale with the number of possible interactions

between modules.

To design cognitive architectures for robots with emer-

gent behaviours hence requires either (a) a computation-

ally intractable planning problem (10) or (b) a creative

act on the part of the designer | which is to be greatly

admired, though impossible to formalise. In both cases

it seems likely that the limits of feasibility for real robots

doing useful things are currently being reached.

3 Let's evolve robots instead

If, however, some objective �tness function can be de-

rived for any given architecture, there is the possibility of

automatic evolution of the architecture without explicit

design. Natural evolution is the existence proof for the

viability of this approach, given appropriate resources.

Genetic Algorithms (GAs) (12) use ideas borrowed from

evolution in order to solve problems in highly complex

search spaces, and it is here suggested that GAs, suitably

extended in their application, are a means of evading the

problems mentioned in the previous section.

The arti�cial evolution approach will maintain a pop-

ulation of viable genotypes (chromosomes), coding for

cognitive architectures, which will be inter-bred and mu-

tated according to a selection pressure. This pressure

will be controlled by a task-oriented evaluation function:

the better the robot performs its



In the long term, as the robots become more sophisti-

cated and their worlds more dynamic, will the simulation

run out of steam? The simulation of a medium resolution

visual system with, for instance, motion detection pre-

processing is painfully slow on today's hardware. Tech-

niques to test many generations of control systems in real

worlds will have to be developed. We are currently pur-

suing the development of one such technique: see (11)

for further details.

6 What should we evolve?

So far we have not addressed the question of what exactly

it is that is being evolved. There are at least three useful

ways to implement the control system of an autonomous

robot:

� An explicit control program, in some high level lan-

guage;

� A mathematical expression mapping inputs to out-

puts, e.g. a polynomial transfer function;

� A blue-print for a processing structure, a network of

simple processing elements.

6.1 High Level Programs

In (9), following a suggestion by Langton, Brooks pro-

poses using an extension of Koza's genetic programming

techniques (18) as the method for evolving a physical or

simulated robot.

One potential problem with evolving a programming

language is that, if it supports partial recursion, pro-

grams to be evaluated may never halt, unless some ar-

bitrary `time-out' is imposed. Brooks' Behaviour Lan-

guage (7) does not use partial recursion, and hence can

be evolved without this problem. Subject to the quali�-

cation that Genetic Programming should have genotype

length changes restricted to small steps his approach at

�rst sight seems reasonable, but we have two broad ob-

jections.

The �rst is that any such programming approach

treats the `brain' as a computational system, producing

a set of motor outputs for any giingBehavior Language, BL, is in e�ect

blueprint for a of Finite State Automata, and

the
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Figure 2: Noisy neuron transfer function.

specialised graphics pipeline processors) is readily avail-

able, it is envisaged that physical







Figure 6: Motion of a robot evolved to maximise the area of the

bounding polygon of its path over a limited time period.

and average much closer together, providing a far more

robust solution.

Figure 8 shows a network evolved in this second exper-

iment. It is fairly complex with many feedback loops, but

it is interpretable in terms of generated behaviours. If

it reminds you of a bowl of spaghetti without the bolog-

nese sauce and chianti, this is probably partly due to

the fact that there is no term in the evaluation functions

that penalises unnecessary links. However, initial pop-

ulations are started with individuals having (randomly)

one or zero internal nodes; the number can only grow

gradually if that promotes greater �tness. We expect

that more concise networks will result if we introduce a

cost for link creation in the evaluation function, and al-

low for the possibility of non-unity time delays and/or

weights on connections.

These early experiments with primitive behaviours

have clearly been successful: we have built on them by

evolving networks for sighted robots; further details of

the work involving vision are given in (11).

10 Conclusions

There is no evidence to suggest that humans are good

at designing systems which involve many emergent in-
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Figure 7: Comparative results for di�erent �tness functions.

Left-hand graph is where �tness is measured by the average of

a series of tests;
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