
Lexical Constraints in DATR

Lionel Moser

School of Cognitive & Computing Sciences

University of Sussex

Brighton, U.K.

email: lionelm@cogs.sussex.ac.uk

February 1992

Abstract

DATR contains no special features to support testing of equality, negation, disjunction, or

multiple inheritance. Nevertheless, given an appropriate interpretation it is possible, within

DATR's existing syntax and semantics, to represent these operations. In this paper we review

the technique known as negative path extension, and show how it can be used to reconstruct

negation, disjunction, and equality testing. We then show how these operations can be used

to de�ne what are essentially meta-level constraints on DATR lexical derivation.

Appendix of DATR Examples

clogic.dtr De�ne logic for working with constraints : 15

ctheory.dtr Illustrate constraint logic based on the primitives in clogic.dtr : 17

sets.dtr De�ne set operators : 20

Introduction

DATR is an `untyped' inheritance network representation language, in the sense that all exten-

sional values are of the same basic type (sequences of atoms), and there is no restriction on what

possible extensional values can be reasonably derived for a given path.

1

`Typed' languages, on the

other hand constrain an entity to have (or represent) some value of the appropriate type. Char-

acters, strings, integers, and integer subranges are familiar examples of types. `Typed feature

structures' are those which are obliged to satisfy some set of `type constraints', typically a logical

formula consisting of disjunctions, negations, equalities and logical connectives. While DATR has

no special facilities to support any of the types of constraints discussed in this paper, all can be

expressed within this paradigm, and more { notably various types of multiple inheritance (Evans

et al. 1991, Moser 1992b).

We begin by developing a technique known as negative path extension

The type of constraints with which we are concerned in this paper are intra-lexical { that

is, they constrain a single lexical entry, not some projection of it (e.g., a phrase). They may be

used for consistency checking in the lexicon, but they are not constraints on composite feature

structures. An external constraint grammar

2

(such as HPSG (Pollard and Sag 1987, Pollard and

Sag 1991)) imposes constraints on relations between feature structure constituents of separate

feature structures;

3

DATR is designed only to represent lexical items, so we may say that any

constraints evaluable in DATR are intra-lexical-item constraints. These are not without value,

as certain types of constraints are inheritable within and apply to the lexical

then the speci�c exception was not matched. The DATR rule of path extension may be stated

as follows: A path p queried at node A extends the longest de�ned path at A which is a pre�x of

p. This `longest-de�ned-pre�x-wins' rule derives the form of inference known in DATR as default

extension. For example, from the node de�nition for Bird,

Bird: <eats> == yes.

we can derive the following statements:

6

Bird: <eats> = yes

<eats worms> = yes.

The �rst follows from the de�nition of that particular path, while the second extends (by default)

its longest de�ned pre�x (<eats>). The statement

Bird: <swims> = yes.

is not derivable, since there is no pre�x of the path <swims>

A: <x> == w x y.

B: <y> == a.

D: <> == <A B:<y> c>

<w> == z

<w x> == yes.

Notice in the above example that the domains of path constituents and values are not disjoint.

The values w, x, y, and a at nodes A and B are interpreted as path constituents at node D, when the

evaluable path <A B:<y> c> is instantiated. This evaluable path speci�es non-local inheritance

from nodes A and B. The derivation of D:<x> = yes is shown in Figure 1.

Initial query Derived value Justi�cation

D:<x> = D:< A:<x> B:<y x> c x> D:<> == <A B:<y> c>

= D:<w x y a c x> evaluable path instantiation, using

A:<x> = w x y.

B:<y x> = a.

= yes D:<w x> == yes.

Figure 1: Derivation of D:<x> = yes.

Equality

Negative path extension is essentially a test for inequality against a speci�c case or cases. Using

NPE we can de�ne a test for equality against a given constant. From

Equal_13: <13> == true

<> == false.

we can derive the following statements:

Equal_13: <13> = true

<14> = false.

The �rst statement derives from the fact that the path Equal:<13> is de�ned (to have value true),

while the second does not extend path <13>, so extends only the next shortest selector, the empty

path (<>), which has value false.

Equality as a local constraint

An equality test can be used to de�ne constraints on feature values. We begin by illustrating a

simple local constraint { i.e., a constraint self-imposed at the de�ning node.

Node C constrains the value of its path <x> to be 13, using the de�nition of Equal_13 given

above:

C: <constraint1> == Equal_13:<<x>>

<constraint2> == Equal_13:<<y>>

<x> == 13

<y> == 14.

The evaluation of path C:<constraint1> tests whether C satis�es the constraint that its value for

path <x> extend <13>. Similarly for C:<constraint2> and path <y>, yielding the two following

theorems:

C: <constraint1> = true

<constraint2> = false.

Their derivations are shown in Figures 2 and 3, respectively.

4

Initial query Derived value Justi�cation

C:<constraint1> = Equal 13:<C:<x>> C:<constraint1> == Equal 13:<<x>>

= Equal 13:<13> evaluable path instantiation using

C:<x> = 13.

= true Equal 13:<13> = true.

Figure 2: Derivation of C:<constraint1> = true

Initial query Derived value Justi�cation

C:<constraint2> = Equal 13:<C:<y>> C:<constraint2> == Equal 13:<<y>>

= Equal 13:<14> evaluable path instantiation using

C:<y> = 14.

= false Equal 13:<14> = false.

Figure 3: Derivation of C:<constraint2> = false

Generalizing equality

Since there may be a number of atomic tests for equality in the hierarchy, rather than create a

new node for each comparison we can bundle all of the atomic comparisons in a single node, using

the particular test value as a selector path pre�x. A single node can be used to test for all such

cases of equality:

Equal:

<13 13> == true

<13> == false

<singular singular> == true

<singular> == false

<> == 'unexpected selector'.

Now we test a path against a value by using the known constant as a selector:

Equal:<13 <x>> = true (if <x> extends <13>)

Equal:<13 <x>> = false (if <x> does not extend <13>)

The de�nition of node C is modi�ed as follows:

C: <constraint1> == Equal:<13 <x>>

<constraint2> == Equal:<13 <y>>

<x> == 13

<y> == 14.

We still have the following derivable statements:

C: <constraint1> = true

<constraint2> = false.

Given conservative intuitions about the notion of equality, it is perhaps anomalous that the

following theorems are also derivable, by default extension:

Equal: <13 13 hi mom> = true

<13 13 21> = true.

5

To restrict equality to a better approximation of our intuitive notion we could insert a delimiter

after the test value, which can be matched in the selector path, and modify the de�nition of C

accordingly:

7

Equal:

<13 13 ;> == true

<13> == false

<singular singular ;> == true

<singular> == false

<> == 'unexpected selector'.

C: <constraint1> == Equal:<13 <x> ;>

<constraint2> == Equal:<13 <y> ;>

<constraint3> == Equal:<13 <z> ;>

<x> == 13

<y> == 14

<z> == 13 14.

This gives the desired result: the test for equality will fail precisely when the test argument path

(or test value) are not equal. Thus we have have the following theorems:

C: <constraint1> = true

<constraint2> = false

<constraint3> = false.

However, if we delimit the selector as well as the test value, we can use any path as selector,

subject to its value being in the set of selectors. Doing this, we have:

8

Equal:

<13 ; 13 ;> == true

<13 ;> == false

<singular ; singular ;> == true

<singular ;> == false

<> == 'unexpected selector'.

C: <constraint1> == Equal:<13 ; <x> ;>

<constraint2> == Equal:<13 ; <y> ;>

<constraint3> == Equal:<<x> ; <z> ;>

<x> == 13

<y> == 14

<z> == 13 14.

Parametrization using DATR variables

By de�ning a DATR variable, $terminal, which enumerates the atoms over which the logical

operators are de�ned, we can make the de�nition of Equal quite concise. For the examples given

thus far, an adequate de�nition would be:

#vars $terminal: 1 2 3 13 14 singular true false.

The restatement of Equal in terms of $terminal is rather elegant:

Equal:

<$terminal ; $terminal ;> == true

<$terminal ;> == false

<> == 'unexpected selector'.

The symbol ;, which lies outside the descriptive domain of the theory, is not enumerated in

$terminal. Other symbols which are not enumerated by $terminalmay also be used (e.g., as path

constituents), so long as they do not appear in paths on which the logical operators are queried.

9

A constraint logic

Thus far we have used only a trivial constraint, testing a value against a single atomic constant. In

order to de�ne conjunctive and disjunctive constraints, we require a logic for combining conjuncts

and disjuncts. If the constraints were to be applied only to fully-speci�ed lexical entries, in

which every path expected to have a value does indeed have one, then classical logic would seem

appropriate. On the other hand, if we wish to state constraints which might be applicable, then

we might also want to have some third logical value, interpreted as `indeterminate'. One example,

mentioned above, was the possibility of testing such constraints as determiner-noun compatibility,

where one of the operands was supplied from a system external to the lexicon. If the constraint

were tested in the absence of a required value, it would be neither satis�ed nor violated. We

In general, we can use function composition to de�ne any logical expression. Material impli-

cation, for example, could be de�ned by the expression:

D5: <c4> == Or:<Not:<c1> <c2> ;>.

D5:<c4> evaluates to true whenever <c1> is false or <c2> is true, precisely when <c1>) <c2> is

true. This can be isolated at a node as follows:

Implies: <> == true

<true false> == false.

and then the constraint at D5:<c4a> can be de�ned as:

D5: <c4> == Implies:<<c1> <c2>>.

Disjunctive constraints such as D6:<c5> test an extensional value for membership in a set, e.g.,

<person> 2 f1; 2; 3g:

D6: <c5> == Or:<Equal:<<person> ; 1 ;>

Equal:<<person> ; 2 ;>

Equal:<<person> ; 3 ;>

;>

<person> == 2.

Subset relations

The generalization of membership of an atom in a list is set inclusion, where every atom in a list

is a member of a second list. Speci�cally, if we let X = x

1

x

2

: : :x

n

and Y = y

1

y

2

: : : y

m

, then we

de�ne Subset:< x

1

x

2

: : : x

n

; y

1

y

2

: : : y

m

;> to be true whenever every x

i

is some y

j

, and false

otherwise. Before de�ning Subset, we �rst make use of path-to-value conversion (Moser 1992a) to

extract the sequence of atoms y

1

y

2

: : : y

m

;:

Arg2: <> == <scan_to_;>

<scan_to_; $terminal> == () <scan_to_;>

<scan_to_; ;> == () <copy_to_;>

<copy_to_; $terminal> == $terminal <copy_to_;>

<copy_to_; ;> == ().

Arg2 is essentially a two-state automaton, with states scan to ; and copy to ;. It produces the

sequence of symbols between the �rst and second ; by: starting in state scan to ;, where it (a)

scans (and removes) terminals up to the �rst ;, outputting nothing (which we illustrate as the

empty list ()); (b) jumps to state copy to ; on input ;, again outputting nothing. From its second

state it has two edges, one traversed on terminals, which it copies to the output, and another

traversed on symbol ;, in which case it outputs nothing and halts.

12

Typical theorems of Arg2, given a suitable de�nition of $terminal, are:

Arg2: <2 3 ; 1 4 ;> = 1 4

<1 2 3 2 1 2 3 ; 1 4 3 2 1 5 ;> = 1 4 3 2 1 5.

We de�ne x

0

x

1

: : : x

n

� y

0

y

1

: : : y

m

recursively in terms of n: if n = 0 then it's true; if n = 1

then it's true if x

1

2 Y ; and if n > 1 then it's true if x

1

2 Y and x

2

: : : x

n

� Y . We again make

use of the assumption that $terminal2 is de�ned identically to $terminal, allowing us to form a

cross-product of terminals.

Subset:

<;> == true

<$terminal ;> == Member

<$terminal $terminal2> == And:<Member:<$terminal ; Arg2 ;>

Subset:<$terminal2> ;>.

The following are example theorems of Subset:

Subset: <3 1 ; 1 2 3 4 ;> = true

<3 1 ; 1 2 4 5 5 ;> = false.

Constraints can be de�ned in terms of Member and Subset, just as was done using And, Or and Not:

F1: <c5> == Subset:< <x> ; <y> ;>

<c6> == Member:< <person> ; 1 2 3 ;>.

Constraint inheritance

All of the constraints we have shown so far have been locally de�ned. For illustrative purposes

this is �ne, but of course the usual case is that some more general class constrains its subclasses

and instances. This can be done by de�ning the constraints in terms of `global inheritance', where

the test values are de�ned with respect to the global context:

12

Evans & Gazdar (1990) discuss formally the class of DATR theories which are equivalent to �nite state

automata.

10

Parent1:

<constraints> == And:< <c1> <c2> <c3> ;>

<c1> == Member:<"<person>" ; 1 2 3 ;>

<c2> == Member:<"<gender>" ; male female neuter ;>

<c3> == Not:<And:<Equal:<"<person>" ; 3 ;>

Equal:<"<number>" ; singular> >>.

Child1: <> == Parent1

<person> == 3

<number> == plural

<gender> == female.

Here the constraints are de�ned so that the values to be tested are inherited from the context

node. Child1 inherits <constraints> (by default, in this case) from Parent1, and Parent1 inherits

<person> (as well as <gender> and <number>) from whichever node originated the query.

It might be desirable, depending upon the grammatical theory, to de�ne constraints which

apply to nodes lacking some constrained attribute. For example, there might be general con-

straints on feature <gender>, but some members of the class to which the constraint applies might

be unspeci�ed for gender. Since in DATR one cannot query paths which have no de�nition, we

might supply a default of the form <> == undef at an appropriate node (perhaps at each node)

such that any path otherwise unde�ned evaluates to this value. undef is assumed to be a symbol

lying outside the descriptive domain of the theory. We could then apply constraints only when the

paths have values lying within the theory's descriptive domain. We �rst de�ne, for convenience,

Is defined:<val> to be true whenever val does not extend undef:

Is_defined: <> == true

<undef> == false.

We now de�ne constraints so that they are not violated by the absence of a test value. Equally,

we can test whether an obligatory path is de�ned:

Parent2: <> == undef

<c6> == Implies:<Is_defined:<"<person>"

Member:<"<person>" ; 1 2 3 ;> >

<c7> == Is_defined:<"<spelling>">.

Parent2:<c6> is reminiscent of GPSG Feature Co-occurrence Restrictions (Gazdar et al. 1985)

(although in GPSG such constraints are grammatical, or extra-lexical, so would fall in the class

constraints merely stated as constants in a DATR representation). In HPSG (Pollard and Sag

1987, Pollard and Sag 1991) constraints on the well-formedness of feature structures hold at both

lexical and grammatical levels, since lexical entries and their projections are both represented as

feature structures, or signs.

13

Adopting the terminology of Carpenter (1990), a feature structure

is said to be well-typed if (i) the value of every feature is appropriate (i.e., satis�es the constraints

on that feature's value); and (ii) every feature de�ned is appropriate (with respect to a type

hierarchy). Furthermore, a feature structure is totally well-typed if (iii) every appropriate feature

is de�ned.

14

Such constraints are not extra-lexical { they apply equally to both lexical and

phrasal signs. It is (a subset of) those which apply to the structure of lexical signs which could be

embedded into lexical entries by local de�nition or inheritance. In HPSG the lexicon is considered

to be a structured hierarchy, with default inheritance providing all of the generalizable structure

of particular word classes. Embedding such constraints (as are representable) in the de�nitions

of word classes would facilitate testing that lexical entries themselves are well-formed.

13

The primary operation in HPSG in uni�cation, and lexical entries are the prede�ned building blocks.

14

In this case there is no possibility of constraint violation `by default' { if a feature is appropriate and unde�ned,

the constraints of the type hierarchy have been violated.

11

number of atoms, we have expressed constraints as tests over an enumeration of them. We used

DATR variables to

[Pollard and Sag 1987] C. Pollard and I.A. Sag. Information-Based Syntax and Semantics: Vol-

ume I { Fundamentals. CSLI Lecture Notes Series, No. 13. Chicago University Press, Chicago,

1987.

[Pollard and Sag 1991] C. Pollard and I.A. Sag. Information-Based Syntax and Semantics: Vol-

ume II { Agreement, Binding, and Control. Manuscript, circulated at the Third European

Summer School in Language, Logic and Information, Saarbrucken, Germany, August 1991.

14

% %

% %

% File: clogic.dtr %

% Purpose: Define logic for working with constraints. %

% Author: Lionel Moser, December 1991 %

% Documentation: HELP *datr %

% Related Files: lib datr; args.dtr %

% Version: 7.00 %

% Copyright (c) University of Sussex 1991. All rights reserved. %

% %

% %

% $terminal must be defined elsewhere if loading this file from some

% other file.

%#vars $terminal: alpha beta gamma 1 2 3 undef.

%#load 'args.dtr'.

%#load 'arglogic.dtr'.

% Polyadic AND

% And:<bool bool ... bool ;> ==

% true - if all bools are true;

% false - if any bools are false.

And: <> == '**** ERROR: (And) Invalid argument'

<;> == true

<true> == <>

<false> == false.

% Polyadic OR

% Or:<bool bool ... bool ;> ==

% true - if any bool is true;

% false - if no bool is true.

Or: <> == '**** ERROR: (Or) Invalid argument'

<;> == '**** ERROR: (Or) Nil bool list'

<true ;> == true

<false ;> == false

<true> == true.

% Not.

Not: <> == '**** ERROR: (Not) Invalid argument'

<true> == false

<false> == true.

% Implication

Implies:

<> == true

<true false> == false.

15

% We assume a default value of indef for any path lacking a value

% within the descriptive domain of the theory.

% A path is defined if it does not extend 'undef'.

Is_defined:

<undef> == false

<> == true.

% Safe:<path>

% A path is `safe' if it satisfies its constraints when evaluated with

% respect to the global context. If the path is safe, then return this

% value; if it is not safe, return a message.

Safe: <> == <If:< "<constraints>" > >

<then> == "<>"

<else> == 'constraint violation'.

16

% %%

% -------- Some theorems --------

% B: <person> = 3

% <constraints> = false.

% C: <person> = 1

% <constraints> = true.

% ParentType introduces compound constraints, and contains all of the

% top-level machinery.

ParentType:

<> == undef

<safe> ==

% Subset takes a cross-product of $terminal, so requires $terminal2

% to be defined identically to $terminal.

%

% Subset:< X0 X1 X2 ... Xn ; Y0 Y1 Y2 ... Ym ;> ==

% true - if every Xi is in Y

% false - otherwise

Subset:

<;> == true

<$terminal ;> == Member

<$terminal $terminal2> == And:<Member:<$terminal ; Arg2 ;>

Subset:<$terminal2> ;>.

% --- Some theorems ----

% Subset: <; ;> = true

% <; 1 2 3 2 ;> = true

% <1 ; 1 2 3 2 ;> = true

% <1 ; 2 3 2 2 ;> = false

% <2 1 ; 2 3 2 2 ;> = false

% <2 1 3 ; 2 3 2 2 1 ;> = true.

% Union:<X0 X1 ... Xn ; Y0 Y1 ... Ym ;> == X U Y

% We define X U Y as Y + (Y - X)

X2: <> == Arg1.

Y2: <> == Arg2.

Union:

<;> == Y2

<$terminal> == <If:<Member:<$terminal ; Y2 ; !> > $terminal>

<then $terminal> == Union:<>

<else $terminal> == Union:<X2:<> ; Y2:<> $terminal ; !>.

% --- Some theorems -----

%

% Union: <1 2 3 ; 1 2 3 ;> = (1 2 3)

% <; 1 2 3 ;> = (1 2 3)

% <1 2 3 ; 2 3 ;> = (2 3 1)

% <1 2 3 4 5 ; ;> = (1 2 3 4 5)

% <1 3 5 ; 2 4 6 ;> = (2 4 6 1 3 5)

% <; ;> = ().

21

% Intersection:<X0 X1 ... Xn ; Y0 Y1 ... Ym ; ;> == XIY % initial call

% Intersection:<X0 X1 ... Xn ; Y0 Y1 ... Ym ; XIY ;> % recursive call

%

% arg names

X1: <> == Arg1.

Y1: <> == Arg2.

XIY:<> == Arg3. % X intersection Y

Intersection:

<;> == XIY

<$terminal> == <If:<Member:<$terminal ; Y1 ; !> > $terminal>

<then $terminal> == Intersection:< X1:<> ; Y1:<> ; XIY:<> $terminal ; !>

<else $terminal> == Intersection:<>.

% --- Some theorems -----

%

% Intersection: <1 2 3 ; 1 2 3 ; ;> = (1 2 3)

%

