

Section 3, where it is also shown that simple GSOS systems associate finite process graphs with
each term. Section 4 is devoted to a possible generalization of this result to simple GSOS systems
with recursive definitions. The note ends with some remarks on an infinitary version of GSOS
systems and a discussion of related literature.

2 Preliminaries

Let Var be a denumerable set of variables ranged over by x,y. A signature 3. consists of a set of
operation symbols, disjoint from Var, together with a function arity that assigns a natural number
to each operation symbol. The set T(X) of terms over X is the least set such that

e Each z € Var is a term.
o If fis an operation symbol of arity [, and Pi,..., P, are terms, then f(Py,..., P;) is a term.

I shall use P,(),... to range over terms and the symbol = for the relation of syntactic equality on
terms. T(X) is the set of closed terms over X, i.e., terms that do not contain variables. Constants,
i.e. terms of the form f(), will be abbreviated as f.

A S-context C[#] is a term in which at most the variables & appear. C[P] is C[Z] with a;
replaced by P; wherever it occurs.

Besides terms we have actions, elements of some given finite set Act, which is ranged over by
a,b,c. A positive transition formula is a triple of two terms and an action, written P % P/, A
negative transition formula is a pair of a term and an action, written P -. In general, the terms
in the transition formula will contain variables.

Definition 2.1 (GSOS Rules and GSOS Systems [7]) Suppose ¥ is a signature. A GSOS
rule p over X is an inference rule of the form:

Uiz wia—”?@/zﬂlﬁjﬁmi} U Uﬁzl{%%ﬂﬁkﬁni}
f(xl,...,x,)iC[f,gﬂ

where all the variables are distinct, m;,n; > 0, f is an operation symbol from % with arity [, C[Z, §]
is a Y-context, and the a;;, by, and c are actions in Act. In the above rule, f is the principal
operation of the rule and C[Z,] is its target.

A GSOS system is a pair G = (Xq, Rg), where X is a finite signature and R is a finite set of
GSOS rules over Xg.

(1)

GSOS systems have been introduced and studied in depth in [7, 6]. The interested reader is
referred to those references for much more on them. Intuitively, a GSOS system gives a language,
whose constructs are the operations in the signature X4, together with a Plotkin-style operational
semantics [24] for it defined by the set of conditional rules Rg. As usual, the operational semantics
for the closed terms over Y4 will be given in terms of the notion of labelled transition system.

Definition 2.2 (Labelled Transition Systems) Let A be a set of labels. A labelled transition
system (lts) is a pair (S, —), where S is a set of states and —C S X A x S is the transition relation.
As usual, 1 shall write s = t in lieu of (s,a,t) €—, and s — t when the label associated with the

transition is immaterial. A state t is reachable from state s if there exist states sg, ..., s, and labels
ai,...,0, such that
5:503523- ﬂsn:t

The set of states which are reachable from s, also known as the set of derivatives of s, will be
denoted by der(s).

A process graph is a triple (r,S,—), where (S,—) is an LTS, r € § is the root, and each state
in S is reachable from r. If (S,—) is an lts and s € S then graph(s,(S,—)) is the process graph
obtained by taking s as the root and restricting (S, —) to the part reachable from s. I shall write
graph(s) for graph(s,(S,—)) whenever the underlying lts (S, —) is understood from the context.
An lts (9, —) is finite iff S and — are finite sets. A process graph graph(s,(S,—)) is finite if the
restriction of (9, —) to

3 Finite Labelled Transition Systems from GSOS Rules

In this section, I shall show how to impose syntactic restrictions on the format of rules in a GSOS
system GG which ensure that graph(P) is a finite process graph for each P € T(¥

2. ClZ,4y] = g(z1,...,2,) for some ¢ € Y¢ and z,...,2, in &,7§. In this case, R =
9(z1,...,2,)0 and, as —g, 0 = H, it follows that

Vhe{l,....,n}dj €{1,....0} : o(z) € der(F}) (2)

Let o(z,) = Ry, for all h € {1,...,n}. Then R = ¢g(R,,...,R,) —F Q by a shorter

derivation. 4l1

The above theorem gives a purely syntactic way of checking whether the process graphs giving
semantics to programs

where 0 denotes a stopped process. The operation f is guarding, but not hereditarily so, as ¢ is
not.

In order to add a facility for recursive definitions to simple GSOS systems, I shall assume a
given, finite set of constant function symbols A, whose elements will be referred to as process

names. 1 shall use X,Y, ... to range over N. Without loss of generality, I shall assume that the
constant symbols in A are fresh

Proof: Let @) € der(f(X,,...,X;)). This means that f(X,,...,X;) =%, . I shall now show that
Qe{gYr,....Y) |geXacAY,....Y, e NJUN

by induction on the length of the derivation f(X,,...,X;) =%, @. The base case of the induction
is trivially seen to hold.
For the inductive step, assume that f(Xy,..., X)) =g, P =5, @, for some P € T(X4

set. Consequently, the results presented in this note cannot be applied directly to the full versions
of these calculi. I shall now briefly sketch a possible extension of the results presented in Section 3
to a class of “infinitary” GSOS systems. For the purpose of this section, I assume that the set of
actions Act is countable!.

Definition 5.1 An infinitary GSOS system is a pair G = (Xg, Rg), where Yg is a countable
signature and Rg is a countable set of GSOS rules over Y.

In the presence of a possibly infinite action set and signature, care must be taken to preserve
the basic sanity properties of GSOS systems [7, 6] which have bearing on the aim of this note.
For instance, processes which give rise to infinitely branching process graphs can now be easily
specified, and should be ruled out. An example of such a process is the constant all-actions with
rules (one such rule for each a € Act):

. a .
all-actions — all-actions

The process graph associated with all-actions is infinitely branching, if Act

Proof: The proof of the first part of this proposition follows the standard lines of that of Lemma 2.6.
To prove the second statement, it is sufficient to show that, for bounded infinitary GSOS systems,
the sets {a €Act|IQ eT(Zg): P2 Q} and {Q | P2 Q} are finite, for all P € T(X¢) and
a € Act. This can be easily shown by structural induction on P. a

In general, the condition of boundedness is not enough to ensure that the process graph associ-
ated with each term in a simple infinitary GSOS system is finite. Consider, for example, a simple
infinitary GSOS system with constants ¢;, ¢ € w, and rules

a
C; — Cip

Such a GSOS system is obviously bounded, but der(¢;) is infinite for all ¢ € w. This pathological
behaviour is due to the fact that the operator dependency relation < associated with

terms (see [19, Definition 4]). This is similar in spirit to the technique proposed in [2, Section 6] to
show that linear GSOS systems, which are a generalization of de Simone systems, are syntactically
well-founded. The notion of simple rule, albeit less powerful than term-rewriting techniques based
on simplification orderings, offers a much simpler syntactic criteria which guarantees the finiteness
of the semantics of terms. It is also a criteria which applies well to general GSOS rules; for instance,
it can be used to show that some operations which use negative premises, like the priority operation
specified by (4), generate finite process graphs from finite ones.

Specialized techniques which can be used to show that certain processes give rise to finite
process graphs have been proposed for CCS and related languages. The interested reader is invited
to consult [10] and the references therein. Not surprisingly, these specialized methods tend to be
more powerful than general syntactic ones as they rely on language-dependent semantic information.
For instance, a method to check the finiteness of a large set of CCS processes based on abstract
interpretation techniques [1] has been proposed in [10]. However, the language dependency of these
techniques, which is the source of their power, makes it difficult to generalize them to classes of
languages.

Acknowledgements: Many thanks to Bard Bloom for his useful comments on this note, and to
Ilaria Castellani and Frits Vaandrager for pointing out the reference [19].

References

[1] S. Abramsky and C. Hankin. Abstract interpretation of declarative languages. Ellis Horwood,
1987.

[2] L. Aceto, B. Bloom, and F.W. Vaandrager. Turning SOS rules into equations. Report CS-
R9218, CWI, Amsterdam, June 1992. Submitted for publication to Information and Compu-
tation.

[3] D. Austry and G. Boudol. Algebre de processus et synchronisations. Theoretical Computer
Science, 30(1):91-131, 1984.

[4] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Syntax and defining equations for an interrupt

[25] R. de Simone. Higher-level synchronising devices in MEIIE-SCCS. Theoretical Computer
Science, 37:245-267, 1985.

[26] R. de Simone and D. Vergamini. Aboard AUTO. Technical Report 111, INRIA, Centre
Sophia-Antipolis, Valbonne Cedex, 1989.

27] F.W. Vaandrager. On the relationship between process algebra and input/output automata
g g
(extended abstract). In Proceedings 6" Annual Symposium on Logic in Computer Science,
Amsterdam, pages 387-398. IEEE Computer Society Press, 1991.

[28] F.W. Vaandrager. Expressiveness results for process algebras. To appear in the Proceedings

of REX "92, 1992.

[29] D. Walker. Analysing mutual exclusion algorithms using CCS. Technical Report ECS-LFCS-
88-45, Department of Computer Science, University of Edinburgh, 1988.

14

