


Section 3, where it is also shown that simple GSOS systems associate �nite process graphs with

each term. Section 4 is devoted to a possible generalization of this result to simple GSOS systems

with recursive de�nitions. The note ends with some remarks on an in�nitary version of GSOS

systems and a discussion of related literature.

2 Preliminaries

Let Var be a denumerable set of variables ranged over by x; y. A signature � consists of a set of

operation symbols, disjoint from Var, together with a function arity that assigns a natural number

to each operation symbol. The set (�) of terms over � is the least set such that

� Each x 2 Var is a term.

� If f is an operation symbol of arity l, and P

1

; : : : ; P

l

are terms, then f(P

1

; : : : ; P

l

) is a term.

I shall use P;Q; : : : to range over terms and the symbol � for the relation of syntactic equality on

terms. T(�) is the set of closed terms over �, i.e., terms that do not contain variables. Constants,

i.e. terms of the form f(), will be abbreviated as f .

A �-context C[~x] is a term in which at most the variables ~x appear. C[

~

P ] is C[~x] with x

i

replaced by P

i

wherever it occurs.

Besides terms we have actions , elements of some given �nite set Act, which is ranged over by

a; b; c. A positive transition formula is a triple of two terms and an action, written P

a

! P

0

. A

negative transition formula is a pair of a term and an action, written P

a

9. In general, the terms

in the transition formula will contain variables.

De�nition 2.1 (GSOS Rules and GSOS Systems [7]) Suppose � is a signature. A GSOS

rule � over � is an inference rule of the form:
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where all the variables are distinct, m

i

; n

i

� 0, f is an operation symbol from � with arity l, C[~x; ~y]

is a �-context, and the a

ij

, b

ik

, and c are actions in Act. In the above rule, f is the principal

operation of the rule and C[~x; ~y] is its target.

A GSOS system is a pair G = (�

G

; R

G

), where �

G

is a �nite signature and R

G

is a �nite set of

GSOS rules over �

G

.

GSOS systems have been introduced and studied in depth in [7, 6]. The interested reader is

referred to those references for much more on them. Intuitively, a GSOS system gives a language,

whose constructs are the operations in the signature �

G

, together with a Plotkin-style operational

semantics [24] for it de�ned by the set of conditional rules R

G

. As usual, the operational semantics

for the closed terms over �

G

will be given in terms of the notion of labelled transition system.

De�nition 2.2 (Labelled Transition Systems) Let A be a set of labels. A labelled transition

system (lts) is a pair (S;!), where S is a set of states and !� S�A�S is the transition relation.

As usual, I shall write s

a

! t in lieu of (s; a; t) 2!, and s ! t when the label associated with the

transition is immaterial. A state t is reachable from state s if there exist states s
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; : : : ; s
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and labels
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The set of states which are reachable from s, also known as the set of derivatives of s, will be

denoted by der(s).

A process graph is a triple (r; S;!), where (S;!) is an LTS, r 2 S is the root, and each state

in S is reachable from r. If (S;!) is an lts and s 2 S then graph(s; (S;!)) is the process graph

obtained by taking s as the root and restricting (S;!) to the part reachable from s. I shall write

graph(s) for graph(s; (S;!)) whenever the underlying lts (S;!) is understood from the context.

An lts (S;!) is �nite i� S and ! are �nite sets. A process graph graph(s; (S;!



3 Finite Labelled Transition Systems from GSOS Rules

In this section, I shall show how to impose syntactic restrictions on the format of rules in a GSOS

system G which ensure that graph(P ) is a �nite process graph for each
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where 0 denotes a stopped process. The operation f is guarding, but not hereditarily so, as g is

not.

In order to add a facility for recursive de�nitions to simple GSOS systems, I shall assume a

given, �nite set of constant function symbols N , whose elements will be referred to as process

names. I shall use X; Y; : : : to range over N . Without loss of generality, I



Proof: Let Q 2 der(f(X
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Q. The base case of the induction

is trivially seen to hold.

For the



set. Consequently, the results presented in this note cannot be applied directly to the full versions

of these calculi. I shall now briey sketch a possible extension of the results presented in Section 3

to a class of \in�nitary" GSOS systems. For the purpose of this section, I assume that the set of

actions Act is countable

1

.

De�nition 5.1 An in�nitary GSOS system is a pair G = (�

G

; R

G

), where �

G

is a countable

signature and R

G

is a countable set of GSOS rules over �

G

.

In the presence of a possibly in�nite action set and signature, care must be taken to preserve

the basic sanity properties of GSOS systems [7, 6] which have bearing on the aim of this note.

For instance, processes which give rise to in�nitely branching process graphs can now be easily

speci�ed, and should be ruled out. An example of such a



Proof: The proof of the �rst part of this proposition follows the standard lines of that of Lemma 2.6.

To prove the second statement, it is su�cient to show that, for bounded in�nitary GSOS systems,

the sets

n

a 2 Act j 9Q 2 T(�
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) : P
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! Q

o

and

n

Q j P
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are �nite, for all P 2 T(�

G

) and

a 2 Act. This can be easily shown by structural induction on P . 2

In general, the condition of boundedness is not enough to ensure that the process graph associ-

ated with each term in a simple in�nitary GSOS system is �nite. Consider, for example, a simple

in�nitary GSOS system with constants c

i

, i 2 !, and rules

c

i

a

! c

i+1

Such a GSOS system is obviously bounded, but der(c

i

) is in�nite for all i



terms (see [19, De�nition 4]). This is similar in spirit to the technique proposed in [2, Section 6] to

show that linear GSOS systems, which are a generalization of de Simone systems, are syntactically

well-founded. The notion of simple rule, albeit less powerful than term-rewriting techniques based

on simpli�cation orderings, o�ers a much simpler syntactic criteria which guarantees the �niteness

of the semantics of terms. It is also a criteria which applies well to general GSOS rules; for instance,

it can be used to show that some operations which use negative premises, like the priority operation

speci�ed by (4), generate �nite process graphs from �nite ones.

Specialized techniques which can be used to show that certain processes give rise to �nite

process graphs have been proposed for CCS and related languages. The interested reader is invited

to consult [10] and the references therein. Not surprisingly, these specialized methods tend to be

more powerful than general syntactic ones as they rely on language-dependent semantic information.

For instance, a method to check the �niteness of a large set of CCS processes based on abstract

interpretation techniques [1] has been proposed in [10]. However, the language dependency of these

techniques, which is the source of their power, makes it di�cult to generalize them to classes of

languages.

Acknowledgements: Many thanks to Bard Bloom for his useful comments on this note, and to

Ilaria Castellani and Frits Vaandrager for pointing out the reference [19].
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