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may be transmitted on 
hannels in
ludes 
hannel names themselves; this,

together with the ability to dynami
ally 
reate new 
hannel names, gives

the language its des
riptive power.

Within the setting of the �-
al
ulus we wish to investigate the use

of types to enfor
e se
urity poli
ies. To fa
ilitate the dis
ussion we ex-

tend the syntax with a new 
onstru
t to represent a pro
ess running at a

given se
urity 
learan
e, �J
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appropriate.

This poli
y does not rule out the possibility of information leaking

indire
tly from high se
urity to low se
urity prin
ipals. Suppose h is a

high 
hannel and hl is a 
hannel with high-level write a

ess and low-level

read a

ess in:

top

q

h?(x) if x = 0 then hl!h0i else hl!h1i

y

j bot

q

hl?(z)Q

y

This system 
an be well-typed although there is some impli
it information


ow from the high se
urity agent to the low se
urity one; the value re
eived

on the high level 
hannel h 
an be determined by the low level pro
ess Q.

It is diÆ
ult to formalize exa
tly what is meant by impli
it information


ow and in the literature various authors have instead relied on non-

interferen
e, [14, 25, 11, 26℄, a 
on
ept more amenable to formalization,

whi
h ensures, at least informally, the absen
e of impli
it information 
ow.

To obtain su
h results for the �-
al
ulus we need, as the above example

shows, a stri
ter se
urity poli
y, whi
h we refer to as the I-se
urity poli
y.

This allows a high level prin
ipal to read from low level resour
es but not

to write to them. Using the terminology of [2, 7℄:

� write up: a pro
ess at level � may only write to 
hannels at level � or

above

� read down: a pro
ess at level � may only read from 
hannels at level

� or below.

In fa
t the type inferen
e system remains the same and we only need


onstrain the notion of type. In this restri
ted type system well-typing,

� 
 P , ensures a form of non-interferb73.8398 0 Td
(osystem)Tjfa
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Figure 2 Labelled Transition Semanti
s

(l-out)

a!hvi

a!v

��! 0

(l-in)

a?(X)P

(e


:

e

C)a?v

������! Pfj

v

=Xjg

~
 =2 fn(P )

(l-open)

P

(~


:

~

C)a!v

�����! P

0

(new b

:

B) P

(b

:

B)(e


:

e

C)a!v

���������! P

0

b 6= a

b 2 fn(v)

(l-
om)

P

�

�! P

0

; Q

�

�! Q

0

P jQ

�

�!
(new E(�)) (P

0

jQ

0

)

(l-eq)

if u = u then P else Q

�

�! P if u = w then P else Q

�

�! Q

u 6= w

(l-
txt)

P

�

�! P

0

�P

�

�! �P j P

0

�JP K

�

�! �JP

0

K

P

�

�! P

0

P jQ

�

�! P

0

jQ

Q j P

�

�! Q j P

0

bn(�) 62 fn(Q)

P

�

�! P

0

(new a

:

A) P

�

�! (new a

:

A) P

0

a 62

n

(�)

a set of basi
 values BV

�

; we use bv to range over base values. We require

that all synta
ti
 sets be disjoint.

The input 
onstru
t `u?(X

:

A)P ' binds all variables in the pattern X

while the 
onstru
t `(new a

:

A) P ' binds names and asso
iated with these.

We have the usual notions of free and bound names and variables, �-

equivalen
e and substitution. We identify terms up to �-equivalen
e. Let

fn(P ) and fv(P ) denote the set of free names and variables, respe
tively, of

the term P . We use `Pfj

v

=Xjg' to denote the substitution of the identi�ers

o

urring in the value v for the variables o

urring in the pattern X. For

`Pfj

v

=Xjg' to be well-de�ned X and v must have the same stru
ture; to

avoid unne
essary 
ompli
ations we assume that a variable 
an o

ur at

most on
e in a pattern. The binding 
onstru
ts have types asso
iated

with them; these will be explained in Se
tion 3 but are ignored for the

moment. In general these types (and the various se
urity annotations)

will be omitted from terms unless they are relevant to the dis
ussion at

hand.



6 Matthew Hennessy and James Riely

The behaviour of a pro
ess is determined by the intera
tions in whi
h

it 
an engage. To de�ne these, we give a labelled transition semanti
s

(LTS) for the language. The set A
t of labels, or a
tions, is de�ned as
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this end, Pre-
apabilities and pre-types are de�ned as follows:


ap ::= Pre-Capability

w

�

hAi �-level pro
ess 
an write values with type A

r

�

hAi �-level pro
ess 
an read values with type A

A ::= Pre-Type

B

�

Base type

f
ap

1

; : : : ; 
ap

k

g Resour
e type (k � 0)

(A

1

; : : : ;A

k

) Tuple type (k � 0)

We will tend to abbreviate a singleton set of 
apabilities, f
apg,�
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Figure 3 Runtime Errors

(e-rd) �Ja?(X)P K

�

7�! err if � � � implies for all A, r

�

hAi =2 �(a)

(e-wr

1

) �Ja!hviK

�

7�! err if � � � implies for all A, w

�

hAi =2 �(a)

(e-wr

2

) �Ja!hviK

�

7�! err if bv 2 v, bv 2 B

�

and � 6� �

(e-str)

P

�

7�! err

P jQ

�

7�! err

P

�

7�! err

�JP K

�

7�! err

P � Q; P

�

7�! err

Q

�

7�! err

P

�;a

:

A

7����! err

(newn

:

A) P

�

7�! err


!hlhi although intuitively it involves a se
urity leak; a low se
urity

agent 
an read from 
 a 
hannel whi
h has at least some 
apability

whi
h should only be a

essible to high se
urity prin
ipals. However

it is straightforward to pla
e it in a 
ontext in whi
h a se
urity leak

o

urs: 
!hlhi j botJ
?(x) x!hviK: Thus our typing system will also be

required to rule out su
h pro
esses. �

3 Resour
e Control

Our typing system will apply only to 
ertain se
urity poli
ies, those in

whi
h the pre-types are in some sense 
onsistent. Consisten
y is imposed

using a system of kinds: the viK
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For ea
h �, let RType

�

be the least set that satis�es:

(rt-wr)

A 2 RType

�

fw

�

hAig 2 RType

�

� � �

(rt-rd)

A 2 RType

�

fr

�

hAig 2 RType

�

� � �

(rt-wrrd)

A 2 RType

�

A

0

2 RType

�

0

fw

�

hAi; r

�

0

hA

0

ig 2 RType

�

� � �

�

0

� �

A <

:

A

0

(rt-base)

B

�

2 RType

�

� � �

(rt-tup)

A

i

2 RType

�

(8i)

(A

1

; : : : ;A

k

) 2 RType

�

Let RType be the union of the kinds RType

�

over all �. �

Note that if � � � then RType

�

� RType

�

. Intuitively, low level values

are a

essible to high level pro
esses. However the 
onverse is not true.

For example w

top

hi 2 RType

top

but w

top

hi is not in RType

bot

. Note also

that there is no relation between subtyping and a

essibility at a given

se
urity level. For example:

w

bot

hi 2 RType

bot

and fw

bot

hi; r

top

hig <

:

r

bot

hi but fw

bot

hi;w

top

hig 62 RType

bot

r

bot

hi 2 RType

bot

and r

bot

hi <

:

r

top

hi but r

top

hi 62 RType

bot

The 
ompatibility requirement between read and write 
apabilities in

a type (rt-wrrd), in addition to the typing impli
ations dis
ussed in

[23℄, also has se
urity impli
ations. For example suppose r

bot

hB

�

i and

w

top

hBi are 
apabilities in a valid 
hannel type. Then apriori a high level

pro
ess 
an write to the 
hannel while a low level pro
ess may read from

it. However the only possibility for � is bot, that is only low level values

may be read. Moreover the requirement B <

:

B

�

implies that B must also

be B

bot

. So although high level pro
esses may write to the 
hannel they

may only write low level values.

Remark. Most of the restri
tions imposed on types are essential to a
hiev-

ing Subje
t Redu
tion, but a few are not. First, Subje
t Redu
tion still

holds if we weaken (u-wr) to: w

�

hAi <

:

w

�

hBi if B <

:

A and � � �.

Were we to adopt this rule, it would be true that every pro
ess typable at

level � would also be typable at level �, for � � �. Given our de�nition,

this is not true. Nonetheless, every pro
ess typable at � 
an be trivially

rewritten so that it is typable at � given our de�nition (one must sim-

ply surround output a
tions with expli
it se
urity restri
tions). We have
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Figure 4 Typing Rules

(t-id)

�(u) <

:

A

� ` u

:

A

(t-base)

bv 2 B

�

� ` bv

:

B

�

(t-tup)

� ` v

i

:

A

i

(8i)

� ` (v

1

; : : : ; v

k

)

:

(A

1

; : : : ;A

k

)

(t-in)

�; X

:

A `

�

P

� ` u

:

r

�

hAi

� `

�

u?(X

:

A)P

(t-out)

� ` u

:

w

�

hAi

� ` v

:

A

� `

�

u!hvi

(t-eq)

� ` u

:

A; v

:

B

� `

�

Q

� u fu

:

B; v

:

Ag `

�

P

� `

�

if u = v then P else Q

(t-sr)

� `

�u�

P

� `

�

�JP K

(t-new)

�; a

:

A `

�

P

� `

�

(new a

:

A) P

(t-str)

� `

�

P; Q

� `

�

P jQ; �P; 0

adopted the stronger rule be
ause it is ne
essary in the next se
tion and

results in no substantive loss of expressivity.

Se
ond, we have limited types to 
ontain at most one read and one

write 
apability. We have done so to simplify the proofs, parti
ularly in

the next se
tion. This 
learly results in a loss of expressiveness. We have

yet to �nd, however, a 
ompelling example that requires a resour
e to

have more than one read or one write 
apability. It is usually sensible to

simply take the meet. �

Proposition 3.2. For every �, RType

�

is a preorder with respe
t to <

:

,

with both a partial meet operation u and a partial join t.

Proof. Straightforward adaptation of Proposition 6.2 of [23℄. The partial

operations u and t are �rst de�ned by stru
tural indu
tion on types.

Typi
al 
lauses are

r

�

hAi u r

�

0

hA

0

i = r

�u�

0

hA uA

0

i

w

�

hAi u w

�

hA

0

i = w

�

hA tA

0

i

r

�

hAi t r

�

0

hAi = r

�t�

0

hA tA

0

i

w

�

hAi t w

�

hA

0

i = w

�

hA uA

0

i

One 
an then show, by indu
tion on the de�nitions, that:

A 2 RType

�

and A 2 RType

�

0

implies A u B 2 RType

�u�

0

and

A t B 2 RType

�t�

0

.

Finally it is straightforward to show that u and t, de�ned in this manner,

are indeed partial meet and partial join operators. �
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We now dis
uss the typing system, whi
h is de�ned using restri
ted

se
urity poli
ies, 
alled type environments. A type environment is a �nite

mapping from identi�ers (names and variables) to types. We adopt some

standard notation. For example, let `�; u

:

A' denote the obvious extension

of �; `�; u

:

A' is only de�ned if u is not in the domain of �. The subtyp-

ing relation <

:

together with the partial operators u and t may also be

extended to environments. For example � <

:

� if for all u in the domain

of �, �(u) <

:

�(u). The partial meet enables us to de�ne more subtle

extensions. For example �ufu

:

Ag may be de�ned even if u is already in

the domain of �. It is well de�ned when �(u) uA exists, in whi
h 
ase it

maps u to this type. We will normally abbreviate the simple environment

fu

:

Ag to u

:

A and moreover use v

:

A to denote its obvious generalisation

to values; this is only well-de�ned when the value v has the same stru
ture

as the type A.

The typing system is given in Figure 4 where the judgements are of

the form `� `

�

P '. If � `

�

P we say that P is a �-level pro
ess. Also, let

`� ` P ' abbreviate `� `

top

P '.

Intuitively `� `

�

P ' indi
ates that the pro
ess P will not 
ause any

se
urity errors if exe
uted with se
urity 
learan
e �. The rules are very

similar to those used in papers su
h as [23, 21℄ for the standard IO typing

of the �-
al
ulus. Indeed the only signi�
ant use of the se
urity levels is

in the (t-in) and (t-out) rules, where the 
hannels are required to have

a spe
i�
 se
urity level. This is inferred using auxiliary value judgements,

of the form � ` v

:

A. It is interesting to note that se
urity levels play no

dire
t role in their derivation. One might expe
t that the judgements for

values would need to ensure that a value written to a 
hannel be a

essible

at the appropriate se
urity level. This job, however, is already handled

by our de�nition of types. For example, in order for w

�

hAi to be a type,

A must be a type a

essible to �.

The typing system enjoys many expe
ted properties, the proof of whi
h

we leave to the reader.

Proposition 3.3.

� (Spe
ialization) � ` v

:

A and A <

:

B then � ` v

:

B

� (Weakening) � `

�

P and � <

:

� then � `

�

P

� (Restri
tion) �; u

:

A `

�

P and u 62 fv(P ) [ fn(P ) implies � `

�

P: �

The main te
hni
al tool required for Subje
t Redu
tion is, as usual, a

substitution result.

Lemma 3.4 (Substitution). If � ` v

:

A then
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� � `



Information Flow vs. Resour
e A

ess in the Asyn
hronous Pi-Cal
ulus 13

(t-str), followed by (t-new), gives the required � `

�

(new E(�)) (P

0

jQ

0

).

�

We 
an now prove the �rst main result:

Theorem 3.6 (Type Safety). If � ` P then for every 
losed 
ontext

C[ ℄ su
h that � ` C[P ℄ and every Q su
h that C[P ℄

�

�!

�

Q we have

Q

�

7�X�! err

Proof. By Subje
t Redu
tion we know that � `

top

Q and therefore it is

suÆ
ient to prove that � `

top

Q implies Q

�

7�X�! err. In fa
t we prove the


ontrapositive, Q

�

7�! err implies � 6`

top

Q by indu
tion on the de�nition

of Q

�

7�! err.

This is a straightforward indu
tive proof on the derivation ofQ

�

7�! err.

For example 
onsider the 
ase (e-rd). Suppose that �Ja?(X)P K

�

7�! err

be
ause � � � implies for all A, r

�

hAi =2 �(a). By supposition, we have

that �(a) either has no read 
apability or it has a read 
apability at level

Æ, where Æ 6� �. In either 
ase, the judgement � `

�

a?(X)P 
annot be

derived, and therefore � `

top

�Ja?(X)P K is also underivable. �

We end this se
tion with a brief dis
ussion on the use of the syntax

�JP K in our language. We have primarily introdu
ed it in order to dis
uss

typing issues. Having de�ned our typing system we may now view �JP K

simply as notation for the fa
t that, relative to the 
urrent typing envi-

ronment �, the pro
ess P is well-typed at level �, i.e. � `

�

P . Te
hni
ally

we 
an view �JP K to be stru
turally equivalent to P , assuming we are

working in an environment � su
h that � `

�

P . This will be formalised in

Se
tion 5.

4 Information Flow

We have shown in the previous se
tions that, in well-typed systems, pro-


esses running at a given se
urity level 
an only a

ess resour
es appropri-

ate to that level. However, as pointed out in the Introdu
tion this does not

rule out (impli
it) information 
ow between levels. Consider the following

system

top

q

h?(x) if x = 0 then hl!h0i else hl!h1i

y

j bot

q

hl?(z)Q

y

(?)

exe
uting in an environment in whi
h h is a top-level read/write 
hannel

and hl is a top-level write and bot-level read 
hannel. This system 
an be

well-typed, using R-types, so the pro
esses only a

ess resour
es appro-

priate to their se
urity level. Nevertheless there is some impli
it 
ow of
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top

q

h?(x) if x = 0 then bot
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Here �

�

is some form of behavioural equivalen
e that is sensitive only to

behaviour of pro
esses that are �-level or lower. It turns out that su
h a

result is very dependent on the exa
t formulation used, as the following

example illustrates.

Let A denote the type fw

bot

hi; r

bot

hig and B denote fr

bot

hig. Fur-

ther, let � map a and b to A and B, respe
tively, and n to the type

fw

bot

hAi; r

bot

hAig. Now 
onsider the terms P and H de�ned by

P ( botJn!hai j n?(x

:

A) x!hiK H ( topJn?(x

:

B) b?(y) 0K

It is very easy to 
he
k that � 
 P;H and that H is bot-free. Note that in

the term P jH there is 
ontention between the low and high-level pro
esses

for who will re
eive a value on the 
hannel n. This means that if we were

to base the semanti
 relation � on any of strong bisimulation equivalen
e,

weak bisimulation equivalen
e, [18℄, or must testing, [20℄, we would have

P j 0 6�

�

P jH

The essential reason is that the 
onsumption of writes 
an be dete
ted;

the redu
tion

P jH

�

�! botJn?(x

:

A) x!hiK j topJb?(y) : 0K


annot be mat
hed by P j0. Using the terminology of [20℄, P j0 guarantees

the test botJa?(x)!!hiK whereas P jH does not.

Even obtaining results with respe
t tomay testing, de�ned in Se
tion 5,

is deli
ate. If we allowed syn
hronous tests then we would also have:

P j 0 6�

�

P jH

Let T be the test botJb!hi!!hiK. Then P j H j T may eventually produ
e

an output on ! whereas P j 0 jT 
annot. However, sin
e our language is

asyn
hronous, su
h tests are not allowed.

In the following se
tion, we prove a non-interferen
e result using may

testing on pro
esses typable using I-types.

5 Noninterferen
e up to May Testing

May equivalen
e is de�ned in terms of tests. A test is a pro
ess with an

o

urren
e of a new reserved resour
e name !. We use T to range over

tests, with the typing rule � 


�

!!hi for all �. When pla
ed in parallel

with a pro
ess P , a test may intera
t with P , produ
ing an output on !

if some desired behaviour of P has been observed.

Definition 5.1. We write T+ if T

�

�!

�

T

0

, where T

0

has the form

(new ~
) (!!hi j T

00

) for some T

00

and ~
. �



Information
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Figure 5 Context LTS

(
-red)

P

�

�! P

0

� . P

�

�!

�

� . P

0

(
-out)

� 
 a

:

r

Æ

hBi

� . a!hvi

a!v

��!

�

� . 0

Æ � �

(
-in)

� 
 a

:

w

Æ

hBi �; ~


:

~

C 
 v

:

B

� . a?(X

:

A)P

(e


:

e

C)a?v

������!

�

�;e


:

e

C . Pfj

v

=Xjg

Æ � �

~
 =2 fn(P )

(
-open)

� . P

(~


:

~

C)a!v

�����!

�

�

0

. P

0

� . (new b

:

B) P

(b

:

B)(e


:

e

C)a!v

���������!

�

�

0

; b

:

B . P

0

b 6= a

b 2 fn(v)

(
-
txt)

� . P

�

�!

�

�

0

. P

0

� . �P

�

�!

�

�

0

. �P j P

0

� . �JP K

�

�!

�

�

0

. �JP

0

K

� . P

�

�!

�

�

0

. P

0

� . P jQ

�

�!

�

�

0

. P

0

jQ

� . Q j P

�

�!

�

�

0

. Q j P

0

bn(�) 62 fn(Q)

� . P

�

�!

�

�

0

. P

0

� . (new a

:

A) P

�

�!

�

�

0

. (new a

:

A) P

0

a 62

n

(�)

Let T be a test su
h that � 


�

T . Then P 
an intera
t with T

by performing the a
tion � and evolving to P

0

. As a result of this

intera
tion, the 
apabilities of the 
ontext may be in
reased, as

re
e
ted in �

0

.

The modi�ed LTS is de�ned in Figure 5 and the rules are straightfor-

ward. However note that in the rule (
-out) it is understood that the

environment already knows the value v being output; it is only in the rule

(
-open) where the environment learns new information.

Some properties of this modi�ed LTS are easy to establish. For exam-

ple in �.P

�

�!

�

�

0

.P

0

the new environment �

0

is 
ompletely determined

by � and the a
tion �. If � is � then �

0


oin
ides with �; otherwise it is

� augmented with the type environment E(�), the bound names together

with their de
lared types. For this reason the following Lemma is easily

established:

Lemma 5.4. � . P

�

�!

�

�

0

. P

0

and � 
 P implies �

0


 P

0

.
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Note that in this Lemma the requirement � 
P is essential to ensure

that if T re
eives a value v then that value is 
ompatible with the type

environment �.

May testing is determined by the tra
es, s, t, in VA
t

�

whi
h pro
esses


an perform. Let � represent the empty tra
e. The notion of 
omplemen-

tary a
tions lifts element-wise to tra
es, s. The names in a tra
e

n

(s) is

de�ned as the union of the names in the individual a
tions; likewise the

bound names in a tra
e bn(s) is de�ned as the union of the bound names

in the individual a
tions.

Definition 5.7 (Tra
es). Let � . P

s

=)

�

�

0

. P

0

be the least relation

su
h that:

(tr-�)

� . P

�

=)

�
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Definition 5.9. (Asyn
hronous tra
es) Let �.P

s

=)

a

�

�

0

.Q be the least

relation whi
h, in addition to the 
lauses in De�nition 5.7, satis�es

(
-ain)

� 
 a

:

w

Æ

hBi;

�; ~


:

~

C 
 v

:

B;

�; ~


:

~

C . P j ÆJa!hviK

s

=)

a

�

� . Q

� . P

(e


:

e

C)a?v:s

======)

a

�

�

0

. Q

Æ � �

~
 =2 fn(P )

�

The ability to 
ompose asyn
hronous tra
es depends on the fa
t that
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� �JP K

(~


:

~

Ca!v)

�����! �JP

0

K be
ause P

(~


:

~

Ca!v)

�����! P

0

.

� 


�

�JP K implies � 


�u�

P and so by indu
tion

P �

�

(new ~


:

~

C) (ÆJa!hviK j P

0

)

for some Æ � � u �. Using the rules (s-srnew)(s-srsr) and (s-srpar)

we 
an then show �JP K �

�

(new ~


:

~

C) (� u ÆJa!hviK j �JP

0

K).

�

Proposition 5.12 (Tra
e Composition). Suppose � 


�

T . �

uu

�

(new ~


:

� ~ �Ja!hviK j �
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Proof. The proof is by indu
tion on the derivation of � . P jH

s

=)

a

�

. We

examine the most interesting 
ases.

� � . P jH

�

�!

�

� . R

s

=)

a

�

.

The most important 
ase here is when there is 
ommuni
ation be-

tween P and H . Here P

�

�! P

0

, H

�

�! H

0

, R is (new ~


:

~

C) (P

0

jH

0

),

where ~
 are the bound variables in �. There are two possibilities.

{ Output from P to H ; � has the form (~


:

~

C)a!v. Let us examine

the tra
e � . (new ~


:

~

C) (P

0

jH

0

)

s

=)

a

�

. Somewhere in s the names

in ~
 may be exported. In general we 
an 
onstru
t a related tra
e

s




su
h that �; ~


:

~

C . (P

0

jH)

s




=)

a

�

, with the property that for any

Q, �; ~


:

~

C . Q

s




=)

a

�

implies � . Q

s




=)

a

�

; s




is obtained from s by

omitting any bounds (


:

C) found on its output a
tions.

Now we may apply indu
tion to �; ~


:

~

C(P

0

j H

0

).

s




=)

a

�

, sin
e

� 


�

P

0

by Subje
t Redu
tion and to �
=
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�; ~


:

~

C . (P j ÆJa!hviK)

s

0

=)

a

�

. Again we may now De�nition 5.9 to

obtain the required �; ~


:

~

C . P

s

0

=)

a

�

.

�

Given this te
hni
al result, we 
an now prove the Non-Interferen
e

Theorem.

Theorem (5.3). If � 


�

P; Q and � 


top

H; K where H, K are �-free

pro
esses, then:

P '

�

�

Q implies P jH '

�

�

Q jK:

Proof. To establish the result, it is suÆ
ient to show that P '

�

�

P j H .

In fa
t by Theorem 5.14 it is suÆ
ient to show � . P

s

=)

a

�

implies � .

P jH

s

=)

a

�

, whi
h is immediate, and � . P jH

s

=)

a

�

implies � . P

s

=)

a

�

;

this follows from the previous Proposition. �

Note that the requirement that P;Q be well-typed pro
esses at level �

is ne
essary for this result to be true. For example 
onsider the pro
ess P

de�ned by h?(x) l?y: 0 in an environment � in whi
h h; l are high-level and

low-level resour
es respe
tively. Then P '

bot

�

0. However P j H 6'

bot

�
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a high-level pro
ess reads a value from a low-level 
hannel
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ti
ated type system is used to 
ontrol information 
ow. The judgements

in their system take system
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