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may be transmitted on channels includes channel names themselves; this,
together with the ability to dynamically create new channel names, gives
the language its descriptive power.

Within the setting of the m-calculus we wish to investigate the use
of types to enforce security policies. To facilitate the discussion we ex-
tend the syntax with a new construct to represent a process running at a
given security clearance, o[
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appropriate.

This policy does not rule out the possibility of information leaking
indirectly from high security to low security principals. Suppose h is a
high channel and hl is a channel with high-level write access and low-level
read access in:

top [[h?(;c) if z = 0 then hI(0) else hI!(l)] | bot[[hl?(z) Q]]

This system can be well-typed although there is some implicit information
flow from the high security agent to the low security one; the value received
on the high level channel h can be determined by the low level process Q).

It is difficult to formalize exactly what is meant by implicit information
flow and in the literature various authors have instead relied on non-
interference, [14, 25, 11, 26], a concept more amenable to formalization,
which ensures, at least informally, the absence of implicit information flow.

To obtain such results for the w-calculus we need, as the above example
shows, a stricter security policy, which we refer to as the I-security policy.
This allows a high level principal to read from low level resources but not
to write to them. Using the terminology of [2, 7]:

e write up: a process at level ¢ may only write to channels at level o or
above

e read down: a process at level 0 may only read from channels at level
o or below.

In fact the type inference system remains the same and we only need
constrain the notion of type. In this restricted type system well-typing,
I' IF P, ensures a form of non-interferb. TdosystemTfa
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Ficure 2 Labelled Transition Semantics

(L-ouT) (L-1N)

A0) “5 0 a2(X) P e propg CEN0)

(L-OPEN)
¢:C)alv
p (&:Clalu pr b+a

(newb:B) P (6:B)(@:Clalu pr b e fn(v)

(L-com)
PP, Q-5
Pl Q — (new&(a)) (P'| Q')

(1-EQ)

. ; U F# w
if u=wuthen Pelse Q — P if u=w then Pelse Q — Q
(L-cTXT)

e P £ p! . )

o[P] “o[P] QP 4Q | P

pP L p!

(newa:A) P 45 (newa:A) P’ @& nlw)

a set of basic values BV, ; we use bv to range over base values. We require
that all syntactic sets be disjoint.

The input construct ‘u?(X : A) P’ binds all variables in the pattern X
while the construct ‘(newa: A) P’ binds names and associated with these.
We have the usual notions of free and bound names and variables, a-
equivalence and substitution. We identify terms up to a-equivalence. Let
fn(P) and fv(P) denote the set of free names and variables, respectively, of
the term P. We use ‘P{Y/x]}’ to denote the substitution of the identifiers
occurring in the value v for the variables occurring in the pattern X. For
‘P{¥/x]}’ to be well-defined X and v must have the same structure; to
avoid unnecessary complications we assume that a variable can occur at
most once in a pattern. The binding constructs have types associated
with them; these will be explained in Section 3 but are ignored for the
moment. In general these types (and the various security annotations)
will be omitted from terms unless they are relevant to the discussion at
hand.
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The behaviour of a process is determined by the interactions in which
it can engage. To define these, we give a labelled transition semantics
(LTS) for the language. The set Act of labels, or actions, is defined as
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this end, Pre-capabilities and pre-types are defined as follows:

cap = Pre-Capability
w, (A) o-level process can write values with type A
ro (A) o-level process can read values with type A
A = Pre-Type
B, Base type
{cap1,..., capi} Resource type (k > 0)
(Aq,...,Ax) Tuple type (k > 0)

We will tend to abbreviate a singleton set of capabilities, {cap},
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Ficure 3 Runtime Errors

(e-rD) pla?(X) P] += err if o < p implies for all A, r,(A) ¢ ¥(a)
(e-wry) plal(v)] = err if 0 < p implies for all A, w,(A) ¢ ¥(a)
(e-wra) plal(v)] = err if bve v, bve B, and 0 A p
P = err P = err P=Q, P+=serr
(B-STR) B | Q V= err  p[P] V= err Q = err
P Eaih oy

(newn:A) P = err

cl{lh) although intuitively it involves a security leak; a low security
agent can read from c¢ a channel which has at least some capability
which should only be accessible to high security principals. However
it is straightforward to place it in a context in which a security leak
occurs: cl(lh) | bot[c?(x) z!(v)]. Thus our typing system will also be
required to rule out such processes. (]

3 Resource Control

Our typing system will apply only to certain security policies, those in
which the pre-types are in some sense consistent. Consistency is imposed
using a system of kinds: the V)]
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For each p, let RType, be the least set that satisfies:

(RT-WR)
A € RType,
o=xp

{w,(A)} € RType,

(RT-RD)

A € RType, (RT-BASE)

{r«(A)} € RType, o= p

(RT-WRRD) B, € RTyp €p

A € RType, o <p (RT-TUP)

A’ € RType, o = p A; € RType, (Vi)

{w,(A), ror(A"Y} € RType, A< A (A1,...,Ar) € RType,
Let RType be the union of the kinds RType, over all p. ]

Note that if ¢ < p then RType, C RType,. Intuitively, low level values
are accessible to high level processes. However the converse is not true.
For example wWiop() € RTyperop but wiop() is not in RTypepor. Note also
that there is no relation between subtyping and accessibility at a given
security level. For example:

Wbot<> S RTypebot and {Wbot<>a rtop<>} < rbot<> but {Wbot<>aWtop<>} Q/ RTypebot
rbot<> S RTypebot and rbot<> < rtop<> but rtop<> Q/ RTypebot

The compatibility requirement between read and write capabilities in
a type (RT-WRRD), in addition to the typing implications discussed in
[23], also has security implications. For example suppose rpot(B,) and
Wiop(B) are capabilities in a valid channel type. Then apriori a high level
process can write to the channel while a low level process may read from
it. However the only possibility for o is bot, that is only low level values
may be read. Moreover the requirement B <: B, implies that B must also
be Bpot- So although high level processes may write to the channel they
may only write low level values.

Remark. Most of the restrictions imposed on types are essential to achiev-
ing Subject Reduction, but a few are not. First, Subject Reduction still
holds if we weaken (U-WR) to: wy,(A) <t w,(B) ifB<: Aando <p.
Were we to adopt this rule, it would be true that every process typable at
level 0 would also be typable at level p, for 0 < p. Given our definition,
this is not true. Nonetheless, every process typable at o can be trivially
rewritten so that it is typable at p given our definition (one must sim-
ply surround output actions with explicit security restrictions). We have
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Ficure 4 Typing Rules

(T-D) (T-BASE) (T-TUP)

[(u) < A bv € B, Ckw; A (Vi)

'-u:A Fl—vaBg Fl—(vl,...,Uk,)I(Al,...,Ak)
(T-EQ)

(T-1N) (T-oUT) '+ u:A,v:B

[LX:AEFP ['Fu:wy(A) e Q

C'Fu:r,(A) F'ov:A F'M{u:B,v:A} ¥ P

P u?(X:A)P T ulv) ' if u = v then P else Q

(T-SR) (T-NEW) (T-STR)

L p Ta:AEP repQ

't p[P] 't (newa:A) P TF P|Q,=*P,0

adopted the stronger rule because it is necessary in the next section and
results in no substantive loss of expressivity.

Second, we have limited types to contain at most one read and one
write capability. We have done so to simplify the proofs, particularly in
the next section. This clearly results in a loss of expressiveness. We have
yet to find, however, a compelling example that requires a resource to
have more than one read or one write capability. It is usually sensible to
simply take the meet. (]

PROPOSITION 3.2. For every p, RType, is a preorder with respect to <:,
with both a partial meet operation M and a partial join L.

Proof. Straightforward adaptation of Proposition 6.2 of [23]. The partial
operations M and U are first defined by structural induction on types.
Typical clauses are

(o (A) M (A7) = rpmr (A TTAY)
W(,< ) Mwy (A7) = wy (A LIA)
o (A) U ror (A) = rouor (A LIA)

we (A) Uw, (A7) = W,,(A MA’)
One can then show, by induction on the definitions, that:

A € RType, and A € RType, implies A M B € RType,n, and
A UB € RType,, .

Finally it is straightforward to show that M and LI, defined in this manner,
are indeed partial meet and partial join operators. [
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We now discuss the typing system, which is defined using restricted
security policies, called type environments. A type environment is a finite
mapping from identifiers (names and variables) to types. We adopt some
standard notation. For example, let ‘I", u : A’ denote the obvious extension
of I'; ‘T',u: A’ is only defined if u is not in the domain of I'. The subtyp-
ing relation <: together with the partial operators M and LI may also be
extended to environments. For example I' <: A if for all v in the domain
of A, I'(u) <2 A(u). The partial meet enables us to define more subtle
extensions. For example I'M{u: A} may be defined even if u is already in
the domain of T'. It is well defined when I'(u) M A exists, in which case it
maps u to this type. We will normally abbreviate the simple environment
{u:A} to u:A and moreover use v: A to denote its obvious generalisation
to values; this is only well-defined when the value v has the same structure
as the type A.

The typing system is given in Figure 4 where the judgements are of
the form ‘T' I° P’. If ' I P we say that P is a o-level process. Also, let
‘T + P’ abbreviate ‘T P P’.

Intuitively ‘I" I° P’ indicates that the process P will not cause any
security errors if executed with security clearance o. The rules are very
similar to those used in papers such as [23, 21] for the standard IO typing
of the m-calculus. Indeed the only significant use of the security levels is
in the (T-IN) and (T-OUT) rules, where the channels are required to have
a specific security level. This is inferred using auxiliary value judgements,
of the form I' - v : A. Tt is interesting to note that security levels play no
direct role in their derivation. One might expect that the judgements for
values would need to ensure that a value written to a channel be accessible
at the appropriate security level. This job, however, is already handled
by our definition of types. For example, in order for w,(A) to be a type,
A must be a type accessible to o.

The typing system enjoys many expected properties, the proof of which
we leave to the reader.

PROPOSITION 3.3.

e (FPECIALIZATION) ' v:A and A<: B thenT'Fv:B
e (WEAKENING) '? P and A <: T then A¥ P
e (RESTRICTION) I u: A ® P and u & fv(P) U fn(P) implies T' 12 P. [

The main technical tool required for Subject Reduction is, as usual, a
substitution result.

LEMMA 3.4 (FUBSTITUTION). If['Fv:A then
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(T-STR), followed by (T-NEW), gives the required I' I¥ (new &(a)) (P Q).
]

We can now prove the first main result:

THEOREM 3.6 (TYPE fAFETY). If I' = P then for every closed context
C[] such that T + C[P] and every @ such that C[P] ——* @Q we have
Q % err

Proof. By Subject Reduction we know that I' F°® Q and therefore it is
sufficient to prove that T' P Q implies Q —< err. In fact we prove the
contrapositive, Q —— err implies T ** Q by induction on the definition
of Q v err.

This is a straightforward inductive proof on the derivation of Q +— err.
For example consider the case (E-RD). Suppose that p[a?(X) P] -5 err
because o < p implies for all A, r,(A) ¢ ¥(a). By supposition, we have
that I'(a) either has no read capability or it has a read capability at level
§, where 6 A p. In either case, the judgement I' ¥ a?(X) P cannot be
derived, and therefore T P p[a?(X) P] is also underivable. O

We end this section with a brief discussion on the use of the syntax
o[P] in our language. We have primarily introduced it in order to discuss
typing issues. Having defined our typing system we may now view o[P]
simply as notation for the fact that, relative to the current typing envi-
ronment I', the process P is well-typed at level o, i.e. I' 12 P. Technically
we can view o[P] to be structurally equivalent to P, assuming we are
working in an environment I' such that I' ¥ P. This will be formalised in
Section 5.

4 Information Flow

We have shown in the previous sections that, in well-typed systems, pro-
cesses running at a given security level can only access resources appropri-
ate to that level. However, as pointed out in the Introduction this does not
rule out (implicit) information flow between levels. Consider the following
system

top[h?(z)if z = 0 then hIl{0) else hi!/(1) ] | bot[ hi?(z) Q] (%)

executing in an environment in which A is a top-level read/write channel
and hl is a top-level write and bot-level read channel. This system can be
well-typed, using R-types, so the processes only access resources appro-
priate to their security level. Nevertheless there is some implicit flow of
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top[h?(z) if z = 0 then bot
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Here =7 is some form of behavioural equivalence that is sensitive only to
behaviour of processes that are o-level or lower. It turns out that such a
result is very dependent on the exact formulation used, as the following
example illustrates.

Let A denote the type {wpot(), rbot()} and B denote {rpot()}. Fur-
ther, let I' map a and b to A and B, respectively, and n to the type
{Whot (A), rbot (A) }. Now consider the terms P and H defined by

P < bot[n!{a) [ n?(x:A) z!()] H < top[n?(xz:B) b?(y) 0]

It is very easy to check that I' I P, H and that H is bot-free. Note that in
the term P|H there is contention between the low and high-level processes
for who will receive a value on the channel n. This means that if we were
to base the semantic relation ~ on any of strong bisimulation equivalence,
weak bisimulation equivalence, [18], or must testing, [20], we would have

P|0%° P|H

The essential reason is that the consumption of writes can be detected;
the reduction

P|H s bot[n?(z: A) #!()] | top[b?(y) . 0]

cannot be matched by P|0. Using the terminology of [20], P|0 guarantees
the test bot[a?(z) w!()] whereas P | H does not.

Even obtaining results with respect to may testing, defined in Section 5,
is delicate. If we allowed synchronous tests then we would also have:

P|0%° P|H

Let T be the test bot[b!{) w!()]. Then P | H | T may eventually produce
an output on w whereas P | 0|7 cannot. However, since our language is
asynchronous, such tests are not allowed.

In the following section, we prove a non-interference result using may
testing on processes typable using I-types.

5 Noninterference up to May Testing

May equivalence is defined in terms of tests. A test is a process with an
occurrence of a new reserved resource name w. We use T to range over
tests, with the typing rule T' I¥ w!() for all ' When placed in parallel
with a process P, a test may interact with P, producing an output on w
if some desired behaviour of P has been observed.

DEFINITION 5.1. We write T if T -=»* T', where T’ has the form
(new ¢) (w!() | T") for some T" and é. O



Information
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Ficure 5 Context LTS

(C-RED) (c-ouT)

P = P Al a:rs(B) 52
AbP T3, Ap P Aval(v) 2% As0 " °
(c-IN) ~
A Ik a:wg(B) A,¢c:ClFv:B 5<o
Ava?(X:A) p &8 A 7 Cp Pyx] €¢MP)
(C-OPEN) .

Ap P (c:C)a!v;o_A/DP/ b£a

A (newb:B) p (iBle:Claly, “Ar - p. By p! b€ fn(v)
(c-cTXT)
A>P £ Ap> P
Ap>*xP £, A'>xP | P’
A p[P] 55 A’ > p[P']
Ap>P £ AP
A>P|Q -, AP |Q
AvQ|P 5, A'sQ | P/
Ap>P £ AP

Ab> (newa:A) P +£5, A'> (newa: A

bn(u) € fn(Q)

P a & n(p)

Let T be a test such that I' IF T. Then P can interact with T
by performing the action y and evolving to P’. As a result of this
interaction, the capabilities of the context may be increased, as
reflected in I".

The modified LTS is defined in Figure 5 and the rules are straightfor-
ward. However note that in the rule (c-0ouUT) it is understood that the
environment already knows the value v being output; it is only in the rule
(C-OPEN) where the environment learns new information.

Some properties of this modified LTS are easy to establish. For exam-
plein ' P £, I''> P’ the new environment IV is completely determined
by I' and the action u. If g is 7 then I coincides with I'; otherwise it is
[ augmented with the type environment £ (i), the bound names together
with their declared types. For this reason the following Lemma is easily

established:

LEMMA 5.4. ' P £, T"> P and I' Ik P implies I'' I+ P’.
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Note that in this Lemma the requirement I' IF P is essential to ensure
that if T" receives a value v then that value is compatible with the type
environment I'.

May testing is determined by the traces, s, t, in VAct* which processes
can perform. Let € represent the empty trace. The notion of complemen-
tary actions lifts element-wise to traces, s. The names in a trace n(s) is
defined as the union of the names in the individual actions; likewise the
bound names in a trace bn(s) is defined as the union of the bound names
in the individual actions.

DEFINITION 5.7 (TRACES). Let I'> P =%, I > P’ be the least relation
such that:

(TR-€)

I's P =%,
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DEFINITION 5.9. (Asynchronous traces) Let I'> P =2 T > Q) be the least
relation which, in addition to the clauses in Definition 5.7, satisfies

(c-AIN)

['IFa:ws(B),

r,é:Clkv:B,

I,é:CoP|éfal()] =2T>Q 5~
> P !'E:C!a?v.g g F,DQ ¢ ¢ fn(P)

The ability to compose asynchronous traces depends on the fact that
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° p[[P]] (¢:Calv) p[[Pl]] because P gézCa!v)} )2
[ 1€ p[P] implies T I¥™"” P and so by induction
P =r (newé: C) (6[a!(v)] | P’)

for some § < o M p. Using the rules (S-SRNEW)(S-SRSR) and (S-SRPAR)
we can then show p[P] =r (newé:C) (pMdfal{v)] | p[P'])-

[
PROPOSITION 5.12 (TRACE COMPOSITION). Suppose ' IF T.
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Proof. The proof is by induction on the derivation of I'> P | H =%-%. We
examine the most interesting cases.

e '>P|H T, I'>R =1,
The most important case here is when there is communication be-
tween P and H. Here P % P/, H % H' Ris (newé:C) (P'| H'),
where ¢ are the bound variables in «. There are two possibilities.

— Output from P to H; « has the form (&:C)alv. Let us examine
the trace I'> (new é: C) (P’ | H') =%, Somewhere in s the names
in ¢ may be exported. In general we can construct a related trace
se such that T',é:C'»> (P' | H) =22, with the property that for any
Q TIé:CxQ =% implies I' > Q =22%; s, is obtained from s by
omitting any bounds (c¢: (') found on its output actions.

Now we may apply induction to I',é:C(P' | H')» =9,
I' IF P’ by Subject Reduction and to Ie/

since
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T,é:C> (P éal(v)]) =0 Again we may now Definition 5.9 to
obtain the required I', ¢: C'> P =2,

[

Given this technical result, we can now prove the Non-Interference
Theorem.

THEOREM (5.3). If ' I P, Q and I I H, K where H, K are o-free

processes, then:

P ~7 Q implies P | H ~7 Q| K.
Proof. To establish the result, it is sufficient to show that P ~% P | H.
In fact by Theorem 5.14 it is sufficient to show I' > P =%=2 implies I' >
P | H =2, which is immediate, and T' > P | H =2 implies T > P =2;
this follows from the previous Proposition. ]

Note that the requirement that P, Q) be well-typed processes at level o
is necessary for this result to be true. For example consider the process P
defined by h?(x)[?y.0 in an environment I" in which A, [ are high-level and
low-level resources respectively. Then P ~b°t 0. However P | H #P°
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a high-level process reads a value from a low-level channel
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ticated type system is used to control information flow. The judgements
in their system take system
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