
Full Abstractness for a Functional/Concurrent Language With

Higher-Order Value-Passing

Takis Hartonas Matthew Hennessy

�

fhartonas, matthewhg@cogs.susx.ac.uk

COGS

University of Sussex at Brighton

Falmer, Brighton BN1 9QH, UK

Abstract

We study an applied typed call-by-value �-calculus which in addition to the usual types

for higher-order functions contains an extra type called proc, for processes; the constructors for

terms of this type are similar to those found in standard process calculi such as CCS.

We �rst give an operational semantics for this language in terms of a labelled transition

system which is then used to give a behavioural preorder based on contexts; the expression N

dominatesM if in every appropriate context ifM can produce a boolean value then so can N.

Based on standard domain constructors we de�ne a model, a prime algebraic lattice, which

is fully abstract with respect to this behaviour preorder; expressions are related in the model

if and only if they are related behaviourally.

The proof method uses concepts which are of independent interest. It involves character-

ising the domain using

Processes communicate by exchanging values along a common channel and since the reception

of values here is implemented, at least partially, using function application, it is therefore natural

to interpret the sequential part of the language in a call-by-value fashion. Thus in function

application, (�X:M)N and in the output of values, �![N]M, the expression N is �rst reduced to

a value. For basic types values are predetermined while for functional types a natural choice is

to take �-abstractions. For the type proc there is no obvious choice for the set of values. For this

reason there is one complication in the type system. A subset of types, called the transmittable

types, is de�ned by limiting functional types to be of the form � ! � , where � is either a base type

or, recursively, a transmittable type. This precludes application expressions MN, where N is a

process, and, since channels must have associated with them transmittable types, �![N]M. Thus

the transmission of processes is not allowed, which is natural. But abstractions over processes,

values of type unit ! proc, which are often called scripts, may be freely exchanged. In short the

core Facile, described in [3] is an elegant and powerful combination of �-calculus and CCS.

We will study a language, which for convenience we call mini-Facile, very similar to core Facile.

The major omission is the local scoping mechanism for channel names. For reasons of de�nability

we will also introduce two extra operators; both of these are very natural but they do not appear

in the language studied in [3]. In Section 3 we give an operational semantics to this language based

on labelled transition systems. In the de�nition there are three kinds of judgements between closed

expressions:

� M �!N.

This generalises the call-by-value reduction relation of the �-calculus. It incorporates �-

reduction, the application of an abstraction to a value, and for expressions of type proc it

represents communication, the exchange of values between processes.

� P

�?

�! �X:Q where both P;Q are of type process.

This represents the ability of the process P to input a value from the channel �; when

received it will be fed as an argument to the abstraction �X:Q

� P

�!

�! [v]Q where both P; Q are processes.

This states that the process P is capable of outputing the value v along the channel �. If

this output is accepted the residual Q is activated.

Based on this operational semantics we de�ne a contextual preorder over arbitrary expressions

in the spirit of [18, 2, 5]. The idea is to start with a basic set of observation predicates O. Then we

say two expressions of the same type are related, M

�

<

O

N, if for every appropriate context C[]

whenever C[M] satis�es an observation so does C[N]. We examine two possible sets of predicates.

The �rst is the ability to produce a boolean value while the second is the ability of a process to

produce a value on a channel.

expression, � is a formula representing a property and � is a set of assumptions about the free

variables possibly occuring in M. In fact, the distinction between values and computations is re-

lower Egli-Milner order (F �

`

G i� 8u 2 F9v 2 G u �

p

v). Idl(Fin(P)) is the ideal completion of

P (recall that an ideal is a lower directed subset); we denote this construction by P

l

(P)

Lemma 2.1 Let (P;�

p

) be any partial order with bottom. Then P

l

(P) is a prime algebraic lattice

with the embedding of P as primes and the embedding of Fin(P) as its compact elements.

A particular instance of this construction is the powerdomain construction. Recall that a

powerdomain functor P

�

is a free functor delivering, for each dcpo D, the free semilattice dcpo

P

�

(D) satisfying a pre-determined set of equations with respect to the semilattice operation {[of

formal union. As usual, fj�jg : D ! P

�

(D) denotes the formal singleton (insertion of generators)

continuous map. We use P

H

(D) to denote the lower (Hoare) powerdomain of D.

Theorem 2.2 If D is an algebraic dcpo, then D

�

=

Idl(K(D)) and P

H

(D)

�

=

Idl(Fin(K(D))).

Proof: See for example [1], vol. 3.

A continuous function over domains f is linear provided f(d _ d

0

) = fd _ fd

0

. If f has more

than one argument, (for example f : D �D

0

! E) then we say it is multilinear if it is linear in

each of its arguments. We will often use the following fact.

Theorem 2.3 Let D, E be domains and f : D ! E a function. Then f is continuous i� it is

determined by its e�ect on the compact elements of D and linear i� it is determined by its e�ect

on the prime elements of D.

A similar result holds for functions with more than one argument. By means of a tensor

product construction, which we will use in our domain equation, multilinear functions can be

dispensed with, in favor of linear functions.

Proposition 2.4 Let C be the category of domains (prime algebraic lattices) with linear mor-

phisms. If hD� E; "i is the category of (bi)linear maps with domain D � E, then there exists a

linear morphism lin

D;E

that is initial in hD�E; "i.

Proof: The codomain of lin

D;E

will be written as D
E (the tensor product of D and E).

Initialityfact.

1000(part3.2 0 Td
((th0(04 0.2v f/R204 0.nvEi14999(D)Tj
/R204 0.24 Tf
12 Td
(i�)Tj
E(th0(04 0.2v f/R204 ategory)Tj
(D)Tj
/R204 0.24 Tf

12.4801 0d
(as)Tj
/R212 0.24 Tf
14.4 0 Td
(D)Tj
/R204 0.24 Tf
10.8 0 Td
(
)Tj
/R212 0.24 Tf
9.6 01 9pl0 Td
3
10.8 0 57.1199 0 Td0 Td
(of)Tj
98 0 Td
(R(is)Tj
11.288 3.83984 Td
(.)Tj
8Tf
14.4 0 en)Tj
/R185 0.24 Tf1.2801 0 Td
(6797 Td
[/R80 (1000(part3.2 0 Td
((th0(04 0.2v f/R204 0.nvEi14999(D)Tj
/R204 0.24 Tf
12 Td
(i�)Tj
E(th0(04 0.2v f/R204 ategory)Tj
(D)Tj
/R204 0.24 Tf

12.4801 0E(th0(R212 0.24 Tf
2597798 0 Td
(D)Tj
/R53 0..24 Tf
7.680064.08008 Td
(0)Tj
Td
(cons50.32 0 Td Td
(equa.8 13.70.0805 0 T0.7(category)Tj
/R000
(014Td
(.)Tj
398.4 13.
(dom55d
(will)Tj
2 Tf
8.1606/R80 0.24 Tf398 0 T92 Td
(i�)Tj
]TJ
32. Td
(s6.8801 0 Td
(E)Tf
21.8398 0 Tduniqud
(domJ
42.2402 0 2.4801 0 Td
(similar)Tj
398.4 13.6Tree)Tj98 00 Td.6801Tj
3^ 3.83984 Td
(.)Tj
0 T4 Td.6801Tj
3en)Tj
/R185 0.24 Tf92.8801 0 Td
6797 Td
[/R80 (1000 0.24 Tf
2.880((th0(04 0.2v f/R201.2801 0 Td
(Td
(D)Tj
/R204 0.24 Tf
116.64 0 TdE(th0(04 0.2v f/R20 Tf
7.2 0 Td
(D)Tj
/R204 0.24 Tf
621.8398 0 TdE(th0(R212 0.24 Tf
2.83984 0 Td
(d)Tj
/R53 0.24 Tf
5.760f
259779 0 Td
(d)Tj
mak000.0 Td
(our)Tj
20.663.8398 0 Td
(is)Tj
12relevequa9.349(y42Td
(9 0 Td
[(b)-99tria48017(prime)-1comm)-14999.3ute,n)-15999i.e.3(its)-8.hatprod
(holds)Tj
29fD.Dphisms.

Lemma 2.5 For each pair D, E of prime algebraic lattices, there is an initial left-strict bilinear

morphism on D�E.

The codomain of this initial map will be denoted by D

s

E. Because of universality of the tensor

product
 of Proposition 2.4 there exists a linear morphism left

?

: D
E ! D

s

E such that

left

?

(?
d) = ? 2 D

s

E. The initial morphism from the cartesian product into D

s

E must

then be the composition left

?

� lin

D;E

. Since we will only have use for the left-strict version of

the tensor product we hereafter use A
B to denote the left-strict tensor product of A and B.

Our domain equation associates a domain D

�

of values to each transmittable type � while

the domains of computations of type � take the form T (D

�

) where T is the composite monad

T = LP

H

() obtained from the Hoare powerdomain and the lifting monad. The unit � of the

monad is the map � = fj()

?

jg and the multiplication � is the obvious map � : T

2

! T , dropping

the outermost pair of formal set-braces and outermost lifting. For an algebraic dcpo A, T (

Type Inference System The type system for the programming language is given by the gram-

mar

�

G

2 GType ::= unit j bool j int

� 2 VType ::= �

G

j � ! �

� 2 Type ::= � j p

There is a special type for processes, proc, and a separate set of types for transmittable values,

objects which can be sent and received by processes. These are either base types or abstractions

over transmittable value types. Thus, for example, functions may be exchanged between processes.

We do not allow terms of type proc to be exchanged in this manner, but, since unit ! proc is a

transmittable value type, objects which may be construed as delayed processes may be exchanged.

The language, which for convenience we call mini-Facile, is given by the grammar below, where

X ranges over a set Var of variables and � is a communication channel name from a set N ; we

assume these channel names have a unique transmittable value-type associated to them and write

� 2 N

�

or sometimes treat � as a function and write �(�) for the value-type of �.

` 2 Lit(eral) ::= tt j � j n (n 2 N) j ()

v 2 Val(ue) ::= ` j �X�Y:M j

M 2 Exp(ression) ::= v j M = N j X j MM j

if M then M else M j M�M j M+M

nil j M

A

j

B

M j res

�

M j

�?M j �![

Table 1: Type Inference System

�tt : bool �� : bool �n : int

�() : unit �nil : proc X : � �X : �

H �M : �

H;X : � �M : �

(W)

H;X : � ! �; Y : � �M : �

H � �X�Y:M : � ! �

(�)

H �M : �

G

H �N : �

G

H �M = N : bool

(eq)

H �M : � ! � H �N : �

H �MN : �

(App)

H �M : � H �N : �

H �M�N : �

(IC)

H �P : proc H �Q : proc

H �P+Q : proc

(EC)

H �M : proc H �N : proc

H �M

A

j

B

N : proc

(P)

H �B : bool H �M : � H �N : �

H � if B then M else N : �

(Cond)

H �M : � H �N : proc

H � �![M]N : proc

(� 2 N

�

) (�!)

H �M : � ! proc

The two relatively non-standard operators we use are

� the parameterised form of communication P

A

j

B

Q, which restricts possible moves of the

construct P

A

j

B

Q to those in A when the action is due to P, or in B when the action is

due to Q, while allowing unrestricted communication between P and Q. This operator is

imported from [12] where it was originally introduced.

� the result function: The expression res

�

(P) has the same type as the channel �; it allows the

process P to compute until a value v can be produced on � and this value is then returned as

the value of the expression. The e�ect of this operator is to recycle back into the functional

fragment of the language values that have been output by processes. It is similar in spirit

to the special action

p

v

�! of (Ferreira et al. [8]).

We use both of these operators in our de�nability theorem, which states that all compact elements

in the denotational model are de�nable in the language.

The result function can be used to implement the internal choice

Table 2: Operational Semantics

Axioms

M�N �!M; M�N �!N

�?(�X�Y:P)

�?

�! �X�Y:P

�![v]P

�!

�! [v]P

(�X�Y:M)v�!M[(�X�Y:M)=X][v=Y]

if tt then M else N �!M

if � then M else N �!N

` = ` �! tt

Rules

P �! P

0

P+Q �! P

0

+Q

Q �! Q

0

P+Q �! P+Q

0

P

�

�!M

P+Q

�

�!M

Q

�

�!M

P+Q

�

�!M

P �! P

0

P

A

j

B

Q �! P

0

A

j

B

Q

Q �! Q

0

P

A

j

B

Q �! P

A

j

B

Q

0

M �!M

0

N �!N

0

M = N �!M

0

= N

0

M �!M

0

MN �!M

0

N

M �!M

0

vM �! vM

0

M �!

4 Denotational Semantics

We determine the model, the collection of value domains, via a domain equation with \coe�cients"

in the category of bounded-complete algebraic dcpo's, to be solved in the types proc and � ! �

in the subcategory of prime algebraic lattices. The coe�cients are the constants of the equation,

the ground value domains for integers, booleans and for the unit type which we choose to be

the discrete cpo's IN, IB and U. The constructors used in the statement of the equation are the

continuous function space, cartesian product, the Hoare powerdomain and lifting monads P

H

(�)

and L and the tensor product functor discussed in Section 2.

The model is determined as the initial solution to the domain equation given in Figure 1.

Figure 1: A Domain Equation

[[int]] = D

int

= IN

[[bool]] = D

bool

= IB

[[unit]] = D

unit

= U

[[� ! �

0

]] = D

�!�

0

= [D

�

! T (D

�

0

)]

[[� ! proc

existence of the appropriate embedding maps �

�

: F

�

(D) ! E. Then the map � : F (D) ! E

de�ned by � =

Q

�2N

�

�

: F (D) ! E can be veri�ed to be such that � � F (�

m

) = �

m

for each

m 2 !. This shows that F is continuous.

If T is the composite monad T (X) = P

H

(X)

?

�

=

P

H

(X

?

), then T is a continuous functor

sending a bc algebraic dcpo to a prime algebraic lattice whose primes are of the form ?; fjcjg

?

(or,

equivalently, fj?jg; fjc

?

jg) with c compact.

If D

�

, with � in a countable index set N , are prime algebraic lattices and we set F

�

(X) =

T (D

�

)

s

X and G

�

(X) = [D

�

! X

?

] then each of F

�

; G

�

is continuous and the category of prime

algebraic lattices is closed under F

�

and G

�

. Hence by the previous discussion it is also closed

under the construction H =

Q

�2N

(F

�

� G

�

) and H is a continuous functor, by the argument

given above, since both F

�

and G

�

are continuous functors.

Existence of an initial

In the next de�nition we introduce a notation for describing the prime elements of the domains

in a way that supports later proofs by induction on primes.

In the ground value domains compact and prime elements coincide and in fact every element

is a compact-prime since the order is discrete. We now de�ne sets A

�

KP

; A

�

K

by induction on the

type � .

Definition 4.3 The sets A

�

KP

; A

�

K

are the least sets such that

1. A

int

KP

= IN = A

int

K

and similarly for the types bool; unit

2. For any type � other than the ground types int; bool; unit, the sets A

�

K

� A

�

KP

consist of �nite

formal joins c = p

1

_ � � � _ p

s

with s � 1 and p

i

2 A

�

KP

3. A

�!�

0

KP

consists of a bottom element ? and formal step functions c ! k where c 2 A

�

K

and

k 2 A

�

0

K

4. A

�!proc

KP

consists of a bottom element ? and formal step functions c! � where c 2 A

�

K

and

� 2 A

proc

KP

5. A

proc

KP

consists of formal elements of the form

� ?

proc

� �

out

(c
�) where c 2 A

�(�)

K

and � 2 A

proc

KP

� �

in

(c! �) where c 2 A

�(�)

K

and � 2 A

proc

KP

.

Next we de�ne an ordering of the sets A

�

K

. Note that in the representation of prime elements

given above c! ? is to be distinguished from the bottom element of the function space since it

really represents the element c ! fj?

?

jg. Similarly, in �

out

(?
�) the left-strict product should

not reduce the concretion ?
� to a bottom element since this element really represents the prime

�

out

(fj?

?

jg
�). Similarly for �

in

(c! �). This explains why we introduced a fresh ? element for

each of the higher types and for proc.

Definition 4.4 The relations �

�

are the least reexive, transitive and antisymmetric (i.e. partial

order) relations on A

�

K

such that

1. �

int

;�

bool

and �

unit

are the identity relations

2. they satisfy axioms/rules such that all mentioned formal joins become least upper bound

operators in the relevant ordering and all mentioned ? elements become the least elements

in the ordering

3. c! k �

�!�

c

0

! k

0

i� c

0

�

�

c and k �

�

k

0

4. �

out

(c
�) �

proc

�

out

(c

0

�

0

) provided c �

�(�)

c

0

and � �

proc

�

0

5. c! � �

�!proc

c

0

! �

0

i� c

0

�

�

c and � �

proc

�

0

6. �

in

(c! �) � �

in

(c

0

! �

0

) i� c! � �

�(�)!proc

c

0

! �

0

14

Since algebraic dcpo's are characterized by their bases of compact elements we have the fol-

lowing

Theorem 4.5 Let D

0

�

= Idl(A

�

K

) be de�ned as the ideal completions of the partial orders

(A

�

K

;�

�

). Then D

0

�

�

=

D

�

.

Proof: The proof follows by calculating the actual primes of the domains D

�

from the bilimit

construction of the initial solution to the domain equation. For example, the primes of the function

space [D

�

! T (D

�

0

)] are the step functions c! P with c 2 K(D

�

) and P a prime in T (D

�

0

), i.e.

an element of the form fj?jg or fjk

?

jg with k 2 K(D

�

0

). Similarly, the actual primes in the domain

of processes are in�nite sequences of pairs with (?;?) everywhere, in the case of the bottom

element, or except for at most one position, in the case of nontrivial primes, where a prime of one

of the forms (fjc

?

jg
�;?) or (?; c! �

?

) occurs.

Interpretation: Let Exp

H

�

be the set of terms in context H �M : � . The interpretation

function, presented in Table 3, is a partial map (de�ned on H �M : � provided it is derivable in

the type system) and it follows the standard pattern. For convenience, we de�ne an interpretation

function V [[�]] assigning to a value expression v a continuous function into the appropriate value

domain D

�

. Thus [[H � v : �]] is always obtained by composition with the unit � of the monad T :

[[H � v : �]] = � � V [[H � v : �]].

Table 3: Interpretation Function

V [[H � n : int]] = �x 2 [[H]]: n (Similarly for other litterals)

V [[H � �X�Y:M : � ! �]] = Y � curry(curry([[H;X : � ! �; Y : � �M : �]]))

[[H � v : �]] = � � V [[H � v : �]]

[[H � FM : �]] = apply

T

([[H � F : � ! �]]; [[H �M : �]])

[[H �M = N : bool]] = EQ � ([[H �M : �

G

]]; [[H �N : �

G

]])

[[H � if B then M else N : �]] = COND

�

� ([[H �B : bool]]; [[H �M : �]]; [[H �N : �]]

[[H �M�N : �]] = [[H �M : �]] _ [[H �N : �]]

[[H � P�Q : proc]] = [[H � P : proc]] _ [[H �Q : proc]]

[[H � P+Q : proc]] = [[H � P : proc]] _ [[H �Q : proc]]

[[H � nil : proc]] = �x: ?

[[H � res

�

(P) : �(�)]] = res

�

� ([[H �P : proc]]

[[H � P

A

j

B

Q : proc]] = PAR

A;B

� ([[H �P : proc]]; [[H �Q : proc]])

[[H � �![M]Q : proc]] = �

out

� ([[H �M : �(�)]]
[[H �Q : proc]])

[[H � �?N : proc]] = �

T

in

� ([[H �N : �(�)! proc]])

The map apply

T

is de�ned as ext

(2)

(apply) where ext

(2)

A;B;C

: (A � B ! TC) �! (TA �

TB ! TC) is the standard extension map of the monad T . Essentially the same de�nition

15

can be given for the case of functions into proc and we use apply

T

for both cases, as discussed

in Section 2. EQ and COND

�

are the natural equality and conditional morphisms. The map

res

�

: D

proc

�! T (D

�(�)

) is de�ned on primes (and then linearly extended to all elements) in the

obvious way: res

�

(�) = fjc

?

jg if � = �

out

(c
�

0

) and ? otherwise.

The interpretation PAR

A;B

of the parallel operator is somewhat more complex. Its de�nition

on primes is given in Table 4 where �

A

j

B

�

0

is the join of elements of the form listed in the third

column and where each such element appears in the join provided the related condition in column

four holds. Table 4 has been compiled after a similar table in Hennessy [12]. The choice operators�

and + are interpreted as joins of functions, where the join f_g is determined by the join operation

in the common codomain of f and g. The maps �

out

and �

in

, previously de�ned, are used to

interpret input and output on �. For input processes we use the natural linear strict extension

of the map �

in

: [D

�(�)

! L(D

proc

)] �! D

proc

to a map

One direction of this result is straightforward, as it simply says that the operational semantics is

reected correctly in the model. However to prove the converse we need a typed modal language L

of properties � of program terms. This is the subject of Section 5. The program logic we develop

is of independent interest and we aim to prove that it is complete in its natural operational

semantics, detailed in Section 5.

From the adequacy result one direction of the full-abstraction follows without much di�culty.

For the converse we need a de�nability result, essentially saying that all compact elements in

the domains D

�

are denotable by some closed expression from mini-Facile. This is the subject

of Section 6. Using de�nability we can also derive completeness of the program logic in the

operational semantics. The proof of full-abstraction is then given in Section 7.

5 Program Logic

Let T ;V ;P be the sets of closed expressions, value expressions and process expressions. The

operational semantics determines a many-sorted transition system hT ;V ;P ;+;

�!

=);

�?

=)i for which

we seek to provide a natural logical language of properties and associated proof systems.

In short, the logical language is generated by the grammar below on the signature of logical

operators f&;u;!;3; hh�!ii[]; hh�?iig where only 3 and hh�?ii are unary while every other connective

is binary:

S 2 AtFmla := S

n

(n 2 N) j S

tt

j S

�

j S

()

j !

proc

j !

L

�

j !

T

�

j

� 2 Fmla := S j �&� j � u � j � ! � j 3� j hh�!ii[�]� j hh�?ii�

We will sort the language separating properties of values, for each trype � 2 VType, from such

of computations and processes. For mnemonic reasons we use A;B;C; : : : for properties of values,

'; ; �; : : : for properties of processes and �; �; #; : : : for properties of arbitrary terms.

Remark 5.1 Nontrivial properties of computations of some type � are always either of the form

3A or conjunctions � u �, where at least one of �; � is a nontrivial property. Distinct conjunction

operations for properties of values as opposed to such of computations are needed. This becomes

clear when attempting to �nd a unique conjunction rule for the program logic that will be sound

in the denotational semantics. The join in the domain of values is to be logically distinguished

from the formal union operation in the domain of computations. Thus di�erent connectives and

associated rules are needed so that we can have the logical analogues of situations like fjc _ kjg � d

and fjc; kjg = fjcjg {[fjkjg � d.

Definition 5.2 The languages L

�

(V); � 2 VType;L

�

(T); � 2 Type are the least sets satisfying

the recursive conditions in Table 5.

Two sorts of semantics relations, indexed in types, j�

�

and j=

�

will be de�ned. The relation

j�

�

is a binary relation from values of some type � to sentences in L

�

(V) while j=

�

relates arbitrary

expressions of type � to sentences in L

�

(T), subject to the mutual recursive clauses of Table 6.

Lemma 5.3 By de�nition, M =) v and vj�

�

A implies M j=

�

3A. Furthermore, M =) N and

N j=

�

� 2 L

�

(T) implies M j=

�

�.

Proof: By structural induction on the sentence � 2 L

�

(T).

19

Table 7: A Proof System G

E

for Semantic Entailment

(Id) Aj�

�

A (T1) � `

�

!

T

�

(T2) Aj�

�

0

!�

B ! !

T

�

(T3) Aj�

�!proc

!

L

�

(Cut1)

Aj�

�

B Bj�

�

C

Aj�

�

C

(Cut2)

� `

�

� � `

�

#

� `

�

#

(!)

Bj�

�

A � `

�

�

A! �j�

�!�

B ! �

(&R)

Aj�

�

B Aj�

�

C

Aj�

�

B&C

(&L1)

Aj�

�

C

A&Bj�

�

C

(&L2)

Bj�

�

C

A&Bj�

�

C

(3)

Aj�

�

B

3A `

�

3B

(T2) ' `

proc

!

proc

(�!)

Aj�

�(�)

B ' `

proc

hh�!ii[A]' `

proc

hh�!ii[B]

(�?)

Bj�

�(�)

A ' `

proc

hh�?iiA! ' `

�(�)!proc

hh�?iiB !

(&

'

L1)

' `

proc

�

'& `

proc

�

(&

'

L2)

 `

proc

�

'& `

proc

�

(&

'

R)

' `

proc

 ' `

proc

�

' `

proc

 &�

(uR)

� `

�

� � `

�

#

� `

�

� u #

(uL1)

� `

�

#

� u � `

�

#

(uL2)

� `

�

#

� u � `

�

#

Axiomatizing Semantic Entailment: We may think of formulae extensionally, as the sets of

terms that satisfy them. This induces notions of semantic entailment where for A;B 2 L

�

(V) and

�; � 2 L

�

(T)

� Aj�

�

B i� for all values v 2 V , vj�

�

A implies vj�

�

B

� � j=

�

� i� for all M, M j=

�

� implies M j=

�

�

Semantic entailment is axiomatized in a Gentzen-style implicational system, G

E

, in Table 7.

Lemma 5.4 The system G

E

is sound in the operational semantics. In other words, Aj�

�

B implies

Aj�

�

B, and � `

�

� implies � j=

�

�.

Proof: By the usual induction on length of proof.

To relate the logic with the model we �rst interpret sentences as compact elements. The

interpretation maps V [[�]] and [[�]], de�ned in Table 8 by mutual recursion, interpret properties of

values as compact elements of the value domains D

�

and properties of computations and processes

as compact elements of T (D

�

) and D

proc

, respectively.

21

Table 8: Interpretation of Sentences as Elements of the Domain

� V [[S

n

]] = n 2 IN and similarly for the other atomic sentences

� V [[A&B]] = V [[A]] _ V [[B]] (� 6= �

G

2 GType)

� V [[A! �]] = V [[A]]! [[�]]

� V [[!

L

�

]] = ? 2 [D

�

! L(D

proc

)]

� [[!

T

�

]] = fj?jg 2 T (D

�

)

� [[3A]] = fjV [[A]]

?

jg

� [[� u �]] = [[�]] {[[[�]]

� [[!

proc

]] = ? 2 D

proc

� [['&]] = [[']] _ [[]]

� [[hh�!ii[A]]] = �

out

(fjV [[A]]

?

jg
[[]])

� [[hh�?iiA!]] = �

in

(V [[A]]! [[]]

?

)

Remark: In the sequel we will leave lifting implicit and write, e.g.

�

in

(V [[A]]! [[]]); �

out

(fjV [[A]]jg
[[]]) and fjV [[A]]jg

Proposition 5.5

1. The interpretation of a sentence � is a compact element of the respective domain, depending

on the sorting and type of �. Conversely, for every compact element C of the domains

D

�

; T (D

�

) and D

proc

there is a sentence � of appropriate sort and type such that C = [[�]]

or C = V [[�]], as appropriate.

2. (Completeness of the System G

E

in the Denotational Semantics)

� Aj�

�

B i� V [[B]] � V [[A]] in L(D

�

)

� � `

�

� i� [[�]] � [[�]] in T (D

�

), and

� ' `

proc

 i� [[]] � [[']] in D

proc

.

Proof: For part 1, we only comment on the case of a sentence of the form A ! � u �. The

interpretation yields the element V [[A]]! [[�]] {[[[�]] where the formal union is the join operation

in T (D

�

0

). This function is identical to the compact element (V [[A]] ! [[�]]) _ (V [[A]] ! [[�]]) in

the model, where the join _ is now taken in the function space [D

�

! T (D

�

0

)]. Similarly for

A! '& .

The structure of our modal language does not directly reect the fact that the transition system

is equiped with parallel operators

A

j

B

. Instead we interpret

A

j

B

as an operator on formulae; '

A

For an environment � and an assumption � let � j=

D

� i� for any variable X , V [[�(X)]]� �(X).

Definition 5.10 Let � j=

D

�

M : � if and only if for every environment �, if � j=

D

�, then

[[�]] � [[M]]

�

.

Similarly, we may let �j�

D

�

v : A i� for every environment �, if � j=

D

�, then V [[A]] � V [[v]]. Since

the latter inequality is equivalent to fjV [[A]]jg � fjV [[v]]jg, i.e. [[3A]] � [[v]], we may only use the

relations j=

D

�

.

We can show that the program logic is complete in the denotational semantics. A priori, there

is no reason why completeness with respect to this technical notion of semantics would have any

bearing on the completeness of the program logic in its natural, operational, semantics. Using our

de�nability results, however, we will be in a position to show in Section 7 that the operational

and denotational semantics for the program logic coincide.

Theorem 5.11 (Soundness-Completeness of G

S

in the Denotational Semantics)

� `

�

M : � if and only if � j=

D

�

M : �

Proof: Given an assumption �, de�ne the environment �

�

by �(X) = [[�(X)]]. Then it is

immediate that � j=

D

M : � i� [[�]] � [[M]]

�

�

. So the soundness and completeness claim is

equivalent to the claim � `

�

M : � if and only if [[�]] � [[M]]

�

�

, which we may alternatively use.

Soundness: The soundness part is proven by induction on length of proofs, and uses the sound-

ness in the denotational semantics of the proof system G

E

for semantic entailment, Proposition

5.5. It is mostly straightforward and we only do a few cases as an example.

For the monotonicity rule (Mon), if � j= � then V [[A]] � V [[v]]

�

and, by Proposition 5.5,

V [[B]] � V [[A]]. Then V [[B]] � V [[v]]

�

.

Proof of soundness for the conjunction rules is

Completeness: If � is any of !

T

�

or !

proc

the claim is trivial using one of the (T) axioms. If �

is of the form � u # we may use the induction hypothesis on �; # and then the conclusion follows

by using the appropriate conjunction rule. The remaining cases are � = 3A and � = ' of one of

the form hh�!ii[A]

depending on the type of M. By completeness of the program logic in the denotational

semantics (Proposition 5.11) `

�

M : � follows from [[�]] � [[M]]

�

. By soundness (Proposition

5.9) of the program logic in the operational semantics M j=

�

�. If � is a basic type then �

is of the form 3S

`

and the de�nition of the satisfaction relation in that case implies that

M +. If the type is � ! � then again the de�nition implies that M + v for some value

v. For the case � = proc we proceed by structural induction on � 6= !

proc

. For example if

M j= hh�!ii[A]' then M

�!

=) [v]Q hence M

�

=).

Adequacy is su�cient for the proof of soundness of the model. The proof of the converse

requires a de�nability result to which we turn next.

6 De�nability

We show in this section, adapting to the speci�c features of our language and extending the

de�nability result of [24] for the functional fragment of our language, that every prime and compact

element of the model is de�nable in mini-Facile and that the partial order on compact and primes

can be captured operationally by appropriate tests. In order to increase readability throughout

this section we consistently use the notation for elements of the domain we introduced in Section

4, see De�nition 4.3 and Theorem 4.5. For a term M of functional type � ! � and an element

d 2 T (D

�

) or d 2 L(D

proc

), we will write [[M]]

�

(d) as an abbreviation for apply

T

([[M]]

�

; d). For

simplicity of notation we write P

�

j

0

Q for P

f�g

j

;

Q. We also write
 for a typical divergent term of

type � or deadlocked term of type proc, where for example

int

= (�X�Y:XY)0 (and similarly for

the other ground types) and

�!�

= (�X�Y:XY)(�Z:M). It is convenient to abbreviate nested

conditionals using a product term inductively de�ned by

if (

Q

i=n+1

i=1

B

i

) then M else N = if B

1

then (if (

Q

i=n

i=2

B

i

) then M else N) else N (1)

where the case n = 0 is the usual conditional. We will abbreviate �nite sumsM

1

�� � ��M

s

using

a summation notation,

P

i=s

i=1

M

i

.

To de�ne the prime elements of T (D

�

) it is su�cient to provide names N

?

for the bottom

element fj?jg and N

c

for the nontrivial primes fjc

?

jg where c is a compact element of the value

domain D

�

.

Definition 6.1 If c is a compact element ofD

�

, for some � 2 VType, then c is de�ned by the term

M

c

provided V [[M

c

]]

�

= c. Similarly, if � is a prime of D

proc

, then � is de�ned by N

�

provided

[[N

�

]]

�

= � 2 D

proc

.

In Table 10 we de�ne families of namesN

�

�

;N

�

C

;N

�

?

for prime elements � 2 D

proc

and compact

elements C 2 D

�

(hence primes of T (D

�

)) for � 2 VType, indexed by channel names � 2 N such

that [[N

�

�

]]

�

= � and [[N

�

?

]]

�

= fj?jg; [[N

�

c

]]

�

= fjcjg (we leave lifting implicit, for simplicity). To

obtain names for all primes we need to be also able to capture operationally the partial order

on prime and compact elements. This purpose is served by tests T

�

�

and T

�

C

, in the sense made

explicit in the statement of the De�nability Theorem.

Lemma 6.2 Let c 2 KD

�

; � 2 KPD

proc

and d 2 TD

�

; d

0

2 D

proc

. Then [[T

�

c

]]

�

(d) 2 f?; fttgg

and [[T

�

�

]]

�

�

j

0

d

0

2 f?; �

out

(fttg
?)g for any channel � not occuring in c or �.

29

Proof: The case c 2 KD

�

is obvious since the test T

�

c

is de�ned in terms of a conditional that

either converges to tt or diverges.

Now let � be a prime in D

proc

and d any element of D

proc

. Since the parallel operator on

D

proc

is linear, by its de�nition, we may assume that d = �

0

is a prime. We examine the cases for

� and �

0

.

� If � = ?

proc

, then T

�

�

= �![tt]nil and then �

out

(fjttjg
?)

�

j

0

�

0

can be computed using Table

4 with A = f�g and B = ;. Going through the cases for �

0

we obtain

If � is a property of processes, � 2 L

proc

(T), then the cases !

proc

and '& are immediate. The

other two cases, hh�!ii[A] and hh�?iiA ! are proven using the second part of the monotonicity

Lemma 4.9 and induction.

Theorem 7.2

The operational and denotational semantics for the program logic coincide. In other words

� j=

O

�

M : � if and only if � j=

D

�

M : �

Proof: The direction (() is immediate since �

Proof: For (1), we �rst show that for closed process expressions P; Q, the hypothesisH�P

�

<

T

Q implies [[P]]

�

� [[Q]]

�

. To establish the latter we show that � � [[P]]

�

implies � � [[Q]]

�

for any

prime �. From the De�nability result we know that there are expressionsN

�

�

, such that [[N

�

�

]]

�

= �;

we choose an � which does not occur in �;P;Q. Then [[�![tt]nil]]

�

� [[T

�

�

�

j

0

N

�

�

]]

�

� [[T

�

�

�

j

0

P]]

�

.

It follows that T

�

�

�

j

0

P

�!

=) [tt]
, using Corollary 6.3. This remains true for � not occurring in

any of �;P;Q. By Lemma 6.2 it follows that T

�;�

w

j

0

P

w!

=) and then the hypothesis implies

T

�;�

w

j

0

Q

w!

=). Since we chose � not occurring in Q, Lemma 6.2 implies that T

�

�

�

j

0

Q

�!

=) [tt]nil.

Use Proposition 6.5 to conclude that � � [[Q]]

�

.

We next consider the case whenM; N are closed expressions of some transmittable value type.

Then M

�

<

T

N implies �![�():M]nil

�

<

T

�![�():N]nil and using the previous case we conclude

[[�():M]]

�

� [[�():N]]

�

. It follows that [[M]]

�

� [[N]]

�

.

Finally consider the case when M; N are arbitrary language expressions and assume that

H �M

�

<

T

N. It is su�cient to show that [[M]]

�

� [[N]]

�

for any compact environment �, i.e. any

environment such that �(X) is a compact element for every variable X . We can use the De�nability

result to de�ne a closed substitution s

�

such that [[s

�

(X)]]

�

= �(X) for every variable X . From

the Subsitution Lemma, Proposition 4.6, it follows that [[M]]

�

= [[Ms

�

]]

�

and similarily for N. Let

C[�] be the context �X

1

: : : �X

k

[�]s

�

(X

1

) : : :s

�

(X

k

), where X

1

: : :X

k

are all the variables used in

H . Then Ms

�

= C[M]. Moreover the expressions C[M]; C[N] are both closed and H�M

�

<

T

N

implies H � C[M]

�

<

T

C[N]. Now use the previous case to conclude [[C[M]]]

�

� [[C[N]]]

�

.

For (2), suppose H �M

�

<

D

N. We must show � j=

O

M : � implies � j=

O

N : �. Let s be a

closed substitution such that s j= � and Ms j= �. We must prove that Ns j= �.

Let C[�] denote the context used in the previous Proposition, �X

1

: : : �X

k

[�]s(X

1

) : : :s

(

X

k

),

where X

1

: : :X

k

are all the variables used in H . Then Ms = C[N] and Ns = C[N]. Also

H �M

�

<

D

N implies [[C[M]]]

�

� [[C[N]]]

�

.

The completeness result for the logic G

E

, Corollary 7.4, means that C[M] j= � implies [[�]] �

[[C[M]]]

�

and therefore [[�]] � [[C[N]]]

�

. Again using the logic comleteness we obtain C[N] j= �, i.e.

the required Ns j= �.

Finally, for (3), suppose H�M

�

<

L

N and C[�] is a context such that both C[M] and C[N] are

closed expressions of type proc and C[M]

�!

=) [v]Q for some v;Q. We must show that C[M]

�!

=).

Let p � [[v]] be a prime. Then p = [[A]] for some sentence A and it follows from the logic

completeness results that v j=

�

A. Then C[M] j=

proc

hh�!ii[A]!. The hypothesis implies that

C[N] j=

proc

hh�!ii[A]! and therefore C[N]

�!

=) as well.

The case when C[M]

�?

=) is similar.

The Operators res

�

someThe

zero or more occurrences of the hole []) such that for P a closed process term C[P] : bool then

the hypothesis that C[P] + b

[2] S. Abramsky, \Domain Theory in Logical Form", Annals of Pure and Applied Logic, vol

51, pp. 1-77, 1991.

[3] R. M. Amadio, \Translating Core Facile", Technical Report ECRC-1994-3, European

Computer-Industry Research Center, Munich, 1994.

[4] H.P. Barendregt, The �-Calculus, its Syntax and Semantics, North-Holland, Amsterdam,

1984.

[5] G. Boudol, \A �-Calculus for (Strict) Parallel Functions", Information and Computation,

vol 108, pp. 51-127, 1994.

[6] H. Barendregt, M. Coppo and M. Dezani-Ciancaglini, \A Filter Model and the Com-

pleteness of Type Assignment", Journal of Symbolic Logic, vol 48, pp. 931-940, 1983.

[7] A. Giacalone, P. Mishra and S. Prasad, \FACILE: A symmetric integration of Concur-

rent and Functional Programming", International Journal of Parallel Programming, vol 15,

No 2, pp. 121-160, 1989.

[8] W. Fereira, M. Hennessy and A. Jeffrey, \Combining the Typed �-Calculus with

CCS", Report 2/96, University of Sussex, Computer Science, May 1996.

[9] C. Fournet andG. Gonthier, \The Reexive CHAM and the Join-Calculus", Proc. POPL

94, 1994.

[10] A. Jeffrey, \A Fully Abstract Semantics for a Concurrent Functional Language with

Monadic Types", Proc. LICS'95, 1995.

[11] M. Hennessy, An Algebraic Theory of Processes, MIT Press, Cambridge, MA, 1988.

[12] M. Hennessy, \A Fully Abstract Denotational Model for Higher-Order Processes", Infor-

mation and Computation vol. 112, No 1, pp. 55-95, 1994.

[13] M. Hennessy, \Higher-Order Processes and their Models", ICALP '94.

[14] K.G. Larsen, \ Proof Systems for Satis�ability in Hennessy-Milner Logic with Recursion",

Theoretical Computer Science vol 72, 265-288, 1990.

[15] R. Milner, Communication and Concurrency, Prentice-Hall, Englewood Cli�s, NJ, 1989.

[16] R. Milner, J. Parrow and D. Walker, \A Calculus of Mobile Processes I, II", Informa-

tion and Computation vol 100, pp 1-40, pp 41-77, 1992.

[17] E. Moggi, \Notions of Computation and Monads", Information and Computation 93, 1991,

pp. 55-92.

[18] J. Morris, \Lambda-Calculus Models of Programming Languages", Ph.D. Thesis, MIT,

1968.

[19] G. Plotkin, \A Powerdomain Construction", SIAM Journal on Computation, vol 5, pp

452-487, 1976.

39

[20] G. Plotkin, \LCF Considered as a Programming Language", Theoretical Computer Science

vol 5, pp. 323-355, 1997.

[21] J.H. Reppy, \A Higher-Order Concurrent Language", in Proceedings of the ACM SIGPLAN

'91 PLDI, SIGPLAN Notices, No 26, pp. 294-305, 1991.

[22] J.H. Reppy, Higher-Order Concurrency, Ph.D. thesis, Cornell University, 1991.

[23] J. Reppy, \CML: A Higher-Order Concurrent Language", in Proc. ACM-SIGPLAN 91,

Conf. on Programming Language Design and Implementation, 1991.

[24] K. Sieber, \Call-by-Value and Nondeterminism", in Typed �-Calculi and Applications, eds.

M. Bezen and J.F.Groote, LNCS 664, Springer-Verlag 1993.

[25] I. Stark, \A Fully-Abstract Domain Model for the �-Calculus", Proc. LICS'96, 1996.

[26] C. Stirling, \A Proof-Theoretic Characterization of Observational Equivalence", Theoret-

ical Computer Science vol 39, 27-45, 1985.

[27] C. Stirling, \Modal Logics for Communicating Systems", Theoretical Computer Science

vol 49, 311-347, 1987.

[28] B. Thomsen, Calculi for Higher-Order Communicating Systems, Ph.D. thesis, Imperial Col-

lege, 1990.

[29] B. Thomsen, \Plain Chocs: A Second Generation Calculus for Higher Order Processes",

Acta Informatica vol 30, pp 1-59, 1993.

[30] G. Winskel, \A Complete Proof System for SCCS with Modal Assertions", LNCS vol 206,

392-410, 1985.

40

