Electronic Devices & Circuit Prototyping (H6099Z)
Note to prospective students: this content is drawn from our database of current courses and modules. The detail does vary from year to year as our courses are constantly under review and continuously improving, but this information should give you a real flavour of what it is like to study at Sussex.
We’re currently reviewing teaching and assessment of our modules in light of the COVID-19 situation. We’ll publish the latest information as soon as possible.
Electronic Devices and Circuit Prototyping
Module H6099Z
Module details for 2024/25.
15 credits
FHEQ Level 4
Module Outline
Transistors are the basic building block of modern electronics and are used in a large variety of applications in computing and electronics.
This module provides you with an introduction of electronic devices, circuit theory and prototyping. It will consist of a series of lectures, starting with basic concepts of semiconductors devices and circuit theory such as diodes, junction transistors and field effect transistors (FET) and metal oxide semiconductor FET (MOSFET). You will learn how to use component specifications (data sheets) to select your electronic components and design advanced circuit to solve real world challenges. You will be provided with skills to simulate and test such electronic circuits and prototype them in the Laboratory using National Instrument hardware and software.
You will use the theory covered in lectures to produce a feedback stabilized series voltage regulator in the Lab to convert alternating current (AC) to direct current (DC) using JFET and compare its performance with MOSFET. AC-DC converters are electronic circuits that uses rectifiers, filtering and regulators to transform AC input into DC output. They are used in power electronic applications where the power input a 50 Hz or 60 Hz sine-wave AC voltage that requires power conversion for a DC output.
Module Topics:
· Semiconductor devices - diodes, junction transistors, field-effect transistors (FETs)
· Circuit applications - Half-wave, Full wave rectification and amplifiers.
· Zener diode applications- fixed reference voltage
· Voltage regulators using FET and MOSFET
· Feedback stabilized series voltage regulator
· Component specifications and selection
· Use of data sheets and applications notes
· Production of circuit diagrams
· Circuit simulation using NI Multisim
· Circuit prototyping using NI Elvis
· Circuit development and testing
· Circuit final construction and testing
· Technical report writing.
Module learning outcomes
Apply mathematics and engineering principles to demonstrate a sound knowledge of fundamental analogue and digital systems.
Apply circuit design concepts to develop solutions of problems that evidence some originality and meet a combination of requirements using a practical implementation and consider the inclusive engineering framework.
Interpret component specifications, application notes and datasheets to select appropriate electronic components and processes, recognising their limitations.
Use practical laboratory and workshop skills to build, test and evaluate a circuit as part of a group in the laboratory.
Type | Timing | Weighting |
---|---|---|
Coursework | 50.00% | |
Coursework components. Weighted as shown below. | ||
Report | A2 Week 1 | 100.00% |
Unseen Examination | Summer Vacation Week 3 Wed 13:40 | 50.00% |
Timing
Submission deadlines may vary for different types of assignment/groups of students.
Weighting
Coursework components (if listed) total 100% of the overall coursework weighting value.
Dr Yalun Wang
Convenor
/profiles/606460
Zhengyin Chen
Convenor
/profiles/572213
Dr Shangbo Wang
Assess convenor
/profiles/633937
Dr Hao Sun
Convenor
/profiles/554029
Please note that the University will use all reasonable endeavours to deliver courses and modules in accordance with the descriptions set out here. However, the University keeps its courses and modules under review with the aim of enhancing quality. Some changes may therefore be made to the form or content of courses or modules shown as part of the normal process of curriculum management.
The University reserves the right to make changes to the contents or methods of delivery of, or to discontinue, merge or combine modules, if such action is reasonably considered necessary by the University. If there are not sufficient student numbers to make a module viable, the University reserves the right to cancel such a module. If the University withdraws or discontinues a module, it will use its reasonable endeavours to provide a suitable alternative module.